2016年1月, 隸屬英國商業、創新和技術部 (Department for Business, Innovation and Skills,BIS)的科學辦公室(Government Office for Science)發布「分佈式分類帳技術:區塊鏈以外(Distributed Ledger Technology:beyond block chain)」研究報告。本篇報告由產官學界合作完成,主要在評估分佈式分類帳技術可以運用在哪一些公私領域,並決定政府以及私人應該採取哪些行動以促進分佈式分類帳技術可被有益運用,並避免可能帶來的傷害。
該份研究報告認為,分佈式分類帳技術可在多個領域協助政府機構,包含徵稅、提供福利、發行護照、土地登記、確保商品供應鏈並且確保政府記錄與服務的完整性。相較於其他網路系統,分佈式分類帳技術較不易受駭客攻擊,而且由於每個参與者都有一份帳簿副本,如果有惡意竄改的狀況,也可以輕易被發現,但這不表示分佈式分類帳技術就不會被駭客攻擊。
數位五國(Digital 5,D5)之一的愛沙尼亞,已多年實驗運用分佈式分類帳技術於公領域服務多年。愛沙尼亞政府透過私人公司運用分佈式分類帳技術建制「免金鑰簽名設施(Keyless Signature Infrastructure,KSI)」,KSI允許愛沙尼亞公民驗證其在政府資料庫資訊的完整性,並避免內部人透過政府網路從事非法活動。KSI確保公民資訊安全以及準確,因而可協助愛沙尼亞政府提供數位化的公司登記以及稅務服務,減少政府以及社會大眾的行政作業負擔。
除此之外,分佈式分類帳技術也有助於確保商品以及智慧財產權的所有以及出處。例如Everledger此一系統可用於確保鑽石的身分,從礦產、切割到銷售,可減少並避免欺詐以及「血鑽石」進入市場。
簡而言之,分佈式分類帳技術提供政府可減少詐欺、腐敗、錯誤以及紙上作業成本的框架,並透過資訊分享、公開透明以及信任,具有可重新定義政府與公民關係的潛力。對於私領域而言也具有同樣可能性,報告特別提出可透過分佈式分類帳技術發展「智慧契約」,可增加信任度並提高效率。據此,本報告針對政府部門提出八大建議:
(1) 應成立專責部門,並與產業、學界緊密合作,並應考慮成立臨時性的專家諮詢團隊。
(2) 英國的研究社群應該要投入研究確保分佈式分類帳技術具備可即性、安全性以及內容準確性。
(3) 政府應支持為地方政府成立分佈式分類帳技術實地教學者,匯聚所有測試技術以及其運用的所需元素。
(4) 政府需要思考如何為分佈式分類帳技術建立妥適的法制框架。法規需要配合新科技應用技術的發展而進步。
(5) 政府應該與產學合作確保相關標準可以符合分佈式分類帳技術及其內容完整性、安全性以及隱私的需求。
(6) 政府應與產學合作確保最有效率以及最可用的身分認證網路協議可為個人及組織所使用,這項工作應與國際標準的發展與執行緊密連結。
(7) 政府應對分佈式分類帳技術進行試驗,以評估該項技術在公領域的可行性。
(8) 建議成立跨部門的利益群體,結合分析以及政策群體,以生成並發展潛在使用案例,並且在公民服務中提供具備知識的專家人員。
除了八大建議,管理與法制上,本報告指出分佈式分類帳技術具有兩種管理規範:法律規範以及技術規範。法律規範是「外部」規範,法律規範可能會被違反,緊接著面臨違法處罰的問題。技術規範是「內部」規範,假如違反技術規範,「錯誤(error)」產生無法運作,因此「規範」本身就可以確保會被遵循。換句話說,技術規範可以節省法律規範的執法成本。另外一方面,分佈式分類帳技術為去中心化技術,如果要以法制管理,也只能在参與者身上施加法律義務,例如Bitcoin,只能對於提供Bitcoin交易服務的平台施加法律義務。美國紐約州金融服務部所發行的比特幣交易執照BitLicnese即為一例。因此,基於去中心化的特性,報告建議政府單位應該要儘量参與技術標準的制定,並且配合技術標準制定相關法律,法律規範與技術規範兩者應該要交互影響。
2023年7月知名社群網路服務平台Twitter基於品牌多角化經營考量(意圖進軍線上金融服務領域),Twitter執行長伊隆·馬斯克(Elon Musk)突然宣布全面變更品牌商標,經典「藍色小鳥」的商標標識改為黑白配色的「X」圖案(以下將該案例稱為「Twitter案」)。 實務上,企業可能於多種情況進行品牌商標之變更,例如:諾基亞(Nokia)因為希望向消費者表明其從手機公司轉型為商業科技公司的決心,故更換新商標,可見Twitter案的更名在科技業並不少見。重點在於品牌商標更名後,可能在商標法方面產生的風險。商標為指示品牌商品與服務來源的重要識別標識,在Twitter案中使用單一英文字母「X」作為新商標,在商標法上,一般被認為識別性較低,較難取得商標權,且其保護範圍可能也因此限縮於設計過的「黑白X標識」;其次,X作為一個常用的英文單字,較易產生與他人商標近似之風險,例如:微軟(Microsoft)公司2003年註冊與其遊戲系統Xbox通訊有關的X商標,或Meta公司自2019年起擁有藍白色彩的X字母商標,且註冊商標指定範圍也是社群媒體、軟體等。 為降低前述品牌商標爭議問題,建議企業由品牌標識設計、品牌全球拓展、品牌行銷宣傳三大階段,分別留意以下事項: 一、品牌標識設計階段:設計全新品牌標識或優化既有品牌標識前,事先評估品牌標識在商標法上是否具有識別性、是否與他人商標近似造成消費者混淆誤認等法定無法取得商標等風險,再決定是否維持原設計理念投入設計。如:Twitter案新商標X,除了透過品牌標識設計增加法律上的識別性,同時降低可能的侵權風險。 二、品牌全球拓展階段:如果預見可能侵權風險,則應加強爭議處理機制的建置,以利爭議發生時,及時採取因應措施。 三、品牌行銷宣傳階段:運用行銷手段加強品牌商標的「後天識別性」,如:透過投放廣告加強在消費者心中「黑白X標識」與品牌的連結等。 有關Twitter Inc.(現已併入X Corp.)的X品牌商標保護與布局策略,將會是後續值得關注的議題。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
「達文希密碼」的著作權爭議「聖血及聖杯」作者邁可貝奇及理查李伊於今年二月在英國高等法院對暢銷書「達文西密碼」出版商「藍燈書屋」(Random House)提出訴訟,主張「達」書作者丹布朗抄襲「聖」書中的若干想法(ideas)及主題(themes),包括其研究多年的「耶穌血脈理論」,因而侵害其著作權。 被告律師對於原告所提之控訴表示,「聖」書中的若干創意在本質上具備高度普遍化特質,無法成為著作權保護之客體。而原告律師亦強調,本案爭論重點並不在於「忽視他人創意成果」或是「獨佔想法或歷史事件」,主要是證明「達」書作者大量依賴「聖」書內容而完成「達」書。原告希望取得禁止令禁止「達」書使用「聖」書資料,此舉將迫使原訂今年5月中旬由湯姆漢克主演之原著電影延後上映。 著作權法之核心精神是保護「表達」,而非「想法」。對於同一題材之文學作品要區分何者屬表達,何者屬想法,並非易事。本案的出現僅是再次印證理論與實務之差距,而本案之後續發展亦值得繼續關注。
歐洲法院2017年12月認定Uber是運輸服務業巴塞隆納計程車工會認為Uber未受西班牙運輸服務業相關法令管制,而有違反公平競爭之虞,因此向西班牙巴塞隆納3號商事法院提起訴訟。3號商事法院認為有必要進一步釐清Uber之商業模式究竟是否為歐盟法令下之運輸服務業或資訊服務業,亦或兩者均是。這將影響歐盟內部市場指令和電子商務指令之涵蓋範圍,從而決定Uber是否有違反競爭法。 為此,歐洲法院在2017年5月做出先行裁決後,於同年12月做出判決,認定Uber之性質是運輸服務業,因此排除前述指令之適用,應接受各國運輸服務業相關法令之要求,否則違反公平競爭。法院觀點認為縱然其商業模式看似乘客與駕駛之間為自由選擇之連結。然而,Uber提供的平台是這個連結不可或缺的關鍵以外,對於運輸服務的提供,包括價格、車輛、駕駛的選擇具有決定性的影響力。此外,Uber藉由組織這樣的運輸服務來獲取利潤本身就涉及了運輸服務的直接提供。所以Uber整體服務的主要組成部分必須被視為以運輸服務構成,不應被分類為資訊服務。
日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。