美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果

  美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。

  「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7195&no=55&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
論數位經濟下研究報告開放近用及著作權例外國際新發展

黑莓機製造商因使用操作系統名稱縮寫為市場行銷而面對商標爭議

  自2005年7月黑莓機的通訊服務-BlackBerry Messenger已成為廣受歡迎的社群網路服務;2010年黑莓機製造商RIM(Research in Motion) 正式使用縮寫BBM代表黑莓機的社群網路功能服務(BlackBerry Messenger),被加拿大廣播收視/聽率調查公司(BBM Canada)提出商標侵權訴訟。     BBM Canada成立於1944年,原名為Bureau of Broadcast Measurement,2001年更名為BBM Canada,自1944年起即使用BBM名稱代表其公司所提供的廣播訊息服務,至今已超過60年。並於2007年取得加拿大註冊商標,指定使用於相關測量服務;BBM Canada並於申請時註明,BBM最早使用於加拿大的日期為2005年3月31日。     RIM於2009年申請加拿大商標註冊-BBM(申請號:1455487),指定使用於通訊服務及電腦軟體等產品及服務,至今仍為調查程序階段。此外,RIM先前亦使用BBX為操作系統系列商標名稱,被美國聯邦法院- US federal court in Albuquerque 宣告臨時禁制令。 RIM日前主張,BBM的商標申請尚未被加拿大智慧局(CIPO-Canadian Intellectual Property Office)駁回,且RIM與BBM Canada兩家公司間並無任何競爭關係,而雙方所提供的服務亦無重疊,故依據加拿大商標法,雙方應可同時併存及使用BBM為表彰兩家的產品及服務上。

簡析日本電子帳簿等保存制度與電子資料真實性之確保

簡析日本電子帳簿等保存制度與電子資料真實性之確保 資訊工業策進會科技法律研究所 2024年03月29日 日本一般社團法人數位信任協議會於2024年3月15日以數位資料真實性確保的重要性及證明其真實性的時戳技術為題,舉行JDTF電子帳簿保存法解說研討會。研討會中由國稅廳課稅總括課解說電子帳簿保存法上與資料真實性相關的利用者需留意的要點,以及時戳技術的利用意義,並舉出具體的利用者事例作為介紹。 壹、事件摘要 日本電子帳簿等保存制度係指,稅法上等有保存必要的「帳簿」或是「收據、請求書等與國稅相關的文件」,非以紙本方式,而是以電子資料的形式保存的制度,此制度被區分為電子帳簿等保存、掃描保存及電子商業交易資料保存等3種制度[1]。 貳、重點說明 日本電子帳簿保存法於2022年的修法中,廢除電子帳簿等保存制度以及掃描保存制度的承認制度等[2],其中尤其值得關注的是電子商業交易的電子保存義務化。意即,自2022年起個人事業者或法人需要以符合特定要件的方式保存該電子商業交易資料。惟由於日本過往對於所接收的電子商業交易資料均以書面原本的形式進行保存,因此2022年的電子帳簿保存法修正案,雖將所接收的電子商業交易資料以電子資料的形式進行保存作為原則,但是由於許多公司尚無法應對電子資料的保存要求,故日本將2022年1月1日至2023年12月31日的2年間,作為電子商業交易資料保存的宥恕期間,在宥恕期間內無法滿足電子商業交易資料且有正當理由的公司,仍然可以將電子商業交易資料以書面的形式保存,並在稅務調查時將所保存的資料以書面形式提交給稅務機關[3]。日本電子帳簿保存法中所指之宥恕期間,係指自2022年起至2023年12月31日間,無法將電子商業交易資料以電子資料形式進行保存的企業,在符合特定之條件下,使其得繼續維持書面資料保存的期間。須留意宥恕期間僅有2年,公司或法人須於宥恕期間的2年內建立可以符合電子資料保存要件的環境整備。以下就2024年實施的日本電子帳簿3種制度進行說明。 一、電子帳簿等保存制度 對於自身最初透過電腦等製作的帳簿如會計軟體製作的入出帳等,或是與國稅相關的資料如透過電腦製作的請求書、決算書等,在符合具備系統相關資料如系統概要書或操作說明書、在保存場所具備電腦、程式、螢幕、印表機及其操作指南,並將記錄事項以畫面或書面的形式呈現,使其可以快速輸出,以及可以應對稅務職員基於質問檢查權的電子資料下載要求等的要件下,可以不以書面列印紙本的方式,而係以數位資料的形式保存的制度[4][5]。 二、掃描保存制度 決算相關資料以外的國稅相關資料,在符合輸入期間的限制、時戳的付與、版本管理、具備可讀取的裝置、可以快速輸出、具備系統概要書等,以及確保檢索機能等的要件下,能以手機或掃描機器掃描的電子資料形式取代該資料書面原本進行保存[6][7]。 三、電子商業交易資料保存制度 被課與所得稅申告或法人稅等帳簿、資料保存義務者,在處理訂單、契約書、收據、報價單、請求書等或與其相當的電子資料時,在確保真實性及可視性的要件下,需要保存該電子商業交易資料[8]。 電子商業交易資料保存制度中的確保真實性要件包含接收已付與時戳的資料、對所保存的資料付與時戳、不論是資料的接收還是保存,皆已可留存訂正刪除履歷或無法進行訂正刪除的系統進行,以及制定關於防止不正當訂正刪除的事務處理規則並依循。可視性要件則包含具備監控、操作說明書等資料以及具備充足的資料檢索要件[9]。 日本電子帳簿等保存制度雖區分為3種不同的制度,惟其中對個人事業者及法人具有強制效力的僅有電子商業交易資料保存制度,電子帳簿等保存制度及掃瞄保存制度則係設置誘因機制促使業者遵循,如電子帳簿等保存制度中創設其所保存的帳簿如符合訂正刪除履歷留存等「優良電子帳簿」的要件,則可減輕過少申告加算稅的稅金[10];掃描保存制度則讓企業可以透過手機或掃描機器將資料原本掃描成電子資料並以之取代書面紙本進行保存,減少企業保存書面資料的空間成本,同時亦可減低資料檢索時所需花費的時間與人力成本。 參、事件評析 日本電子帳簿保存法中對個人事業者與法人在保存電子商業交易資料時,課以確保電子資料真實性以及可視性的義務,並透過時戳技術的利用,確保個人事業者與法人可以達成電子資料真實性以及可視性的要求。 對於電子資料真實性的管理,我國資訊工業策進會科技法律研究所創意智財中心於2021年發布重要數位資料治理暨管理制度規範(下稱EDGS),協助企業管理內部重要數位資料。EDGS中亦肯認應保存電子資料的訂正刪除歷程,並以時戳技術及存證技術確保資料未經變更、刪除及竄改之真實性。我國企業如欲對自身的數位資料進行管理及存證等,可參考資訊工業策進會科技法律研究所創意智財中心所發布之EDGS建立資料管理流程,以降低數位資料管理相關風險。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]国税庁,〈電子帳簿保存法の内容が改正されました〜 令和5年度税制改正による電子帳簿等保存制度の見直しの概要 〜〉,頁1(2023年),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/pdf/0023003-082.pdf(最後閱覽日:2024/03/26)。 [2]〈税務手続の電子化に関する資料〉,財務省,https://www.mof.go.jp/tax_policy/summary/tins/i04.htm(最後閱覽日:2024/03/26)。 [3]国税庁,〈電子帳簿保存法一問一答【電子取引関係】〉,頁35(2022),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/pdf/0021006-031_03.pdf(最後閱覽日:2024/03/26)。 [4]同註1。 [5]国税庁,〈はじめませんか、帳簿・書類のデータ保存(電子帳簿等保存)〉,頁1-2(2023),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/tokusetsu/pdf/0023006-085_02.pdf(最後閱覽日:2024/03/26)。 [6]同註1。 [7]国税庁,〈はじめませんか、書類のスキャナ保存〉,頁1-2(2023),https://www.nta.go.jp/law/joho-zeikaishaku/sonota/jirei/tokusetsu/pdf/0023006-085_03.pdf(最後閱覽日:2024/03/26)。 [8]同註1。 [9]同註3,頁8。 [10]同註5,頁2。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

TOP