美國寬頻進步報告:寬頻部署有顯著改善但數位落差持續存在

  根據美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)於2016年之寬頻進步報告,美國現行之標準為業者必須提供下載速度至少達25Mbps與上傳速度至少達3Mbps之寬頻服務,相較於2010年所設立之標準─下載速度至少達4Mbps與上傳速度至少達1Mbps的寬頻服務,顯示出美國在寬頻部署上有明顯的進步。然而,目前仍有3400萬美國人民所使用之寬頻服務並未達到上述FCC所設立之標準(25Mbps/3Mbps)。

  這份報告亦顯示,持續之數位落差(digital divide)導致40%生活在鄉村以及部落地區之人民所使用之寬頻服務並未達到上述FCC所設立之標準(25Mbps/3Mbps)。此外,E-rate計畫方案之持續推行,雖使許多學校之網路連線已有顯著改善,但仍有41%之學校未能符合FCC之短期目標,亦即這些學校之寬頻連線仍無法供應數位學習之應用。基於以上理由,2016年之寬頻進步報告總結:寬頻部署並未被適時並合理的(timely and reasonable)適用於全體美國人。

  該份報告亦認為當今的通訊服務應以固網及行動寬頻服務(fixed and mobile broadband service)之方式提供,彼此的功能不同並能互補。然而,FCC尚未建立行動寬頻服務標準,因此,行動寬頻之部署尚未能反映在目前之評估。

  依據1996年電信法第706條之規定,FCC必須每年報告先進通訊能力之部署,是否讓每位美國人民都能適時且合理的使用。國會所定義之「先進通訊能力」(advanced telecommunications capability)必須具高品質之能力,可讓使用者傳輸以及接收高品質之聲音、數據資料、照片以及影像服務。

此份報告重點總結如下:

●全面部署:
目前仍有3400萬美國人(約10%人口)無法接取固網下載速度至少達25Mbps與上傳速度至少達3Mbps之寬頻服務。然而,相較於去年之5500萬美國人(約17%人口)未能接取該寬頻服務,今年已有顯著的改善。

●鄉村與城市間之數位落差仍待改善:
仍有39%之鄉村人口(2340萬人)以及41%之部落人口(160萬人)無法接取該寬頻服務(25Mbps/3Mbps)。相較於都市僅有4%之人無法接取該寬頻服務,發展上仍不平等。但相較於去年報告所示,有高達53%鄉村人口以及63%部落人口無法接取寬頻服務,城鄉發展不均之程度已有改善。

●學校之寬頻速度:
全國僅有59%之學校達到FCC所設立之短期目標,亦即100Mbps可以供1000位學生使用,並有極少數之學校達到長程目標,即1Gbps可供1000位學生使用。

  這份報告首次將衛星寬頻服務列入評估,FCC對於衛星寬頻服務適用與固網寬頻服務採用同樣之標準(25Mbps/3Mbps)。然而,在評估過程中,尚未有任合衛星寬頻服務符合FCC所採行之寬頻標準。

相關連結
※ 美國寬頻進步報告:寬頻部署有顯著改善但數位落差持續存在, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7198&no=55&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

FinCEN發布「防制洗錢與打擊資助恐怖主義優先事項」,以因應各種新興威脅

  隨著犯罪集團洗錢管道與手法日新月異,嚴重威脅金融秩序與經濟發展,美國財政部金融犯罪執法網(Financial Crimes Enforcement Network, FinCEN)於2021年6月30日發布防制洗錢與打擊資助恐怖主義(anti-money laundering and countering the financing of terrorism, AML/CFT)政策的優先事項(Priorities),目的係為了應對日益猖獗之洗錢犯罪行為,幫助金融機構評估其風險,並調整其防制洗錢計畫和資源運用優先順序,以提升國家AML/CFT政策效率與有效性。   依據發布內容,優先事項包括:(1)貪汙;(2)網路安全與虛擬貨幣相關之網路犯罪;(3)國內外資助恐怖分子;(4)詐欺;(5)跨國犯罪組織活動;(6)毒品販運組織活動;(7)人口販運與人口走私(human trafficking and human smuggling);(8)資助大規模毀滅性武器擴散(proliferation financing),反映了美國國家安全與全球金融體系長期以來存在之威脅,並將虛擬貨幣用於洗錢、資助恐怖主義,及支付勒索軟體攻擊贖金等納入防制洗錢範疇,防止虛擬貨幣成為洗錢管道。   FinCEN預計於2021年底前提出實施辦法,並根據美國防制洗錢法(Anti-Money Laundering Act)之要求,至少每4年更新一次優先事項,以因應美國金融體系與國家安全面臨的各種新興威脅。

歐洲議會對開放900MHz達成初步共識

  歐洲議會於2009年4月27日一讀通過GSM指令修正案(Directive 87/372/EEC),對開放900MHz 頻段(880~915MHz、925~960MHz)供UMTS/HSPA技術使用達成共識。   全球行動供應商協會GSA (Global mobile Suppliers Association)協會歡迎這項進展,宣稱行動寬頻系統HSPA應用於900MHz段將可為網路營運商帶來實質的效益。因為相較於目前多數3G系統使用的較高頻率2100MHz,UMTS系統使用900MHz頻段能讓網路營運商以更低的成本、更好的電波穿透率進行網路布建。   根據UMTS論壇,雖然在歐洲900MHz係保留給GSM系統使用,但UMTS900-HSPA系統之商業布建與運轉已經在如澳洲、愛沙尼亞、芬蘭、冰島,甚至泰國等國家開始進行。   瑞典是最近一個宣布將開放900MHz頻段供3G使用之國家。其主管機關PTS於2009年3月19日宣稱將在執照更新時,允許仍以本頻段提供GSM服務的營運商以新的科技提供新的行動寬頻服務。   本案預計於2009年5月6日進行表決。

美國「人工智慧應用管制指引」

  美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。

TOP