華碩因路由器資安漏洞遭起訴一案與美國聯邦貿易委員會達成和解

  美國聯邦貿易委員會(Federal Trade Commission, FTC)於2014年間以路由器(Router)與雲端服務的安全漏洞,導生消費者面臨資安與隱私風險之虞,而依據《聯邦貿易委員會法》第5條(Federal Trade Commission Act, 15 U.S.C. § 45(a))委員會防止不公平競爭違法手段(unfair methods of competition unlawful ; prevention by Commission)之規定,即華碩涉嫌行使不公平或詐欺的手段致影響商業活動之公平競爭為由,對我國知名全球科技公司華碩電腦股份有限公司(ASUSTeK Computer, Inc.)進行起訴 。

  本案歷經FTC近二年的調查程序後,華碩公司於2016年2月23日同意FTC的和解條件,即華碩公司應針對部分存在資安疑慮的產品依計畫進行改善,並且於未來20年期間內須接受FTC的獨立稽核(independent audits)。 FTC於該案的起訴報告中指出,華碩於銷售其所生產的路由器產品時,曾對消費者強調該產品具許多資安保障措施,具有得以防止使用者不受駭客攻擊等效果;然而,該產品實際上卻具有嚴重的軟體設計漏洞,使駭客得以在使用者未知的情況下,利用華碩路由器的網頁控制面板(web-based control panel)之設計漏洞,任意改變路由器的安全設定;更有專家發現駭客於入侵華碩製造之路由器產品後,得以強佔使用者的網路頻寬。

  此外,華碩允許使用者沿用路由器產品的預設帳號密碼,再加上華碩所提供的AiCloud與AiDisk雲端服務功能,讓使用者得以隨身硬碟建立其私有的雲端儲存空間,使得駭客得藉由上述華碩路由器的設計漏洞直接竊取使用者於隨身硬碟內所儲存的資料。FTC並於起訴聲明中指出,駭客利用華碩路由器產品與相關服務的漏洞,於2014年間成功入侵超過12,900多位產品使用者的雲端儲存空間。除此之外,使華碩更加備受譴責的是,當該漏洞被發現之後,其並未主動向產品的使用者強調產品存在該資安問題,更未告知使用者應下載更正該設計漏洞的軟體更新,因此FTC始決定對華碩進行起訴。

相關連結
※ 華碩因路由器資安漏洞遭起訴一案與美國聯邦貿易委員會達成和解, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7201&no=55&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
以『江蘇科技改革30條』解析中國大陸科研經費改革制度

  中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。   此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。   中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。

愛爾蘭資料保護委員會發布《控制者資料安全指引》,提供資料控制者關於個人資料安全措施之依循指引

  愛爾蘭資料保護委員會(Ireland's Data Protection Commission)於今(2020)年2月公布控制者資料安全指引(Guidance for Controllers on Data Security),愛爾蘭資料保護委員會表示本指引亦適用於資料處理者。指引內針對17個面向說明控制者於資料處理時應考量之安全措施,分別為:(1)資料蒐集與留存政策(Data Collection and Retention Policies);(2)存取控制(Access Controls);(3)螢幕保護程式(Automatic Screen Savers);(4)加密(Encryption);(5)防毒軟體(Anti-Virus Software);(6)防火牆(Firewalls)(7)程式修補更新(Software Patching);(8)遠端存取(Remote Access);(9)無線網路(Wireless Networks);(10)可攜式設備(Portable Devices);(11)檔案日誌及軌跡紀錄(Logs and Audit Trails);(12)備份系統(Back-Up Systems);(13)事故應變計畫(Incident Response Plans);(14)設備汰除(Disposal of Equipment);(15)實體安全(Physical Security);(16)人為因素(The Human Factor);(17)認證(Certification)。   此外,愛爾蘭資料保護委員會還強調,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第25條與第32條有關資料控制者之義務,可透過「從設計與預設機制著手資料保護(Data protection by design and by default)」,與適當的技術及組織措施等方式,並考量現有技術、執行成本、處理之本質、範圍、脈絡及目的與對當事人權利及自由之風險可能性與嚴重性等因素,以確保其安全措施符合相應資料風險之安全等級。   最後,愛爾蘭資料保護委員會表示資料控制者更應確保其組織內員工瞭解該等安全措施並確實遵守,資料控制者應於制定其資料安全政策時考量到本指引所列各項目,以履行其保護資料安全之義務。

加拿大針對奈米科技提出評估與建議報告

  在奈米產品開創新生活態樣的同時,也因為奈米材料相異之運用途徑,產生了管理上的困難。儘管如此,新興科技仍應就風險而設計因應之道,並著眼於鑑別奈米材料潛在之危險性、瞭解人體暴露於奈米微粒環境之程度,以及確認適當之評估策略。   加拿大學術議會(Council of Canadian Academies)於2008年7月公佈奈米研究報告「微小即不同:由科學觀點看奈米法制之挑戰(Small is Different: A Science Perspective on the Regulatory Challenges of the Nanoscale)」;目的係針對奈米科技之學術研究、風險評估與管理監控等三部份奠定法制基礎。該報告由加拿大健康部擔任召集人,並成立奈米專家小組,共歷時八個月完成;內容分為三項:彙整該小組對於奈米議題所累積之科學成果、擷取網路使用大眾對於奈米材料相關法規之諮詢與對話,以及奈米專家針對該新興科技所提出之建議與發展方針。   然而,就法規面而言,該研究小組認為,根據現下奈米材料之特性,尚無制定新法之必要,僅需延伸現有法規機制即可,並提供建議如下: (1) 設定專門用語和分級以便於奈米材料之EHS研究。 (2) 建立標準安全控制程序或技術。 (3) 重新思考以工作場域、消費者及環境為主軸之監督方式。 (4) 使用得宜之生命週期途徑以分析奈米材料之相關風險。   該報告指出,現有的科技法規與風險處理機制,著實因侷限於奈米材料諸多之未知而遭受挑戰,並引發各界對於相應管理策略之大規模研究,故無論中央或地方政府,應更加關注國內各部會於奈米議題下之協調、科學環境之變化,及他國法制之更替。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP