美國聯邦貿易委員會(Federal Trade Commission, FTC)於2014年間以路由器(Router)與雲端服務的安全漏洞,導生消費者面臨資安與隱私風險之虞,而依據《聯邦貿易委員會法》第5條(Federal Trade Commission Act, 15 U.S.C. § 45(a))委員會防止不公平競爭違法手段(unfair methods of competition unlawful ; prevention by Commission)之規定,即華碩涉嫌行使不公平或詐欺的手段致影響商業活動之公平競爭為由,對我國知名全球科技公司華碩電腦股份有限公司(ASUSTeK Computer, Inc.)進行起訴 。
本案歷經FTC近二年的調查程序後,華碩公司於2016年2月23日同意FTC的和解條件,即華碩公司應針對部分存在資安疑慮的產品依計畫進行改善,並且於未來20年期間內須接受FTC的獨立稽核(independent audits)。 FTC於該案的起訴報告中指出,華碩於銷售其所生產的路由器產品時,曾對消費者強調該產品具許多資安保障措施,具有得以防止使用者不受駭客攻擊等效果;然而,該產品實際上卻具有嚴重的軟體設計漏洞,使駭客得以在使用者未知的情況下,利用華碩路由器的網頁控制面板(web-based control panel)之設計漏洞,任意改變路由器的安全設定;更有專家發現駭客於入侵華碩製造之路由器產品後,得以強佔使用者的網路頻寬。
此外,華碩允許使用者沿用路由器產品的預設帳號密碼,再加上華碩所提供的AiCloud與AiDisk雲端服務功能,讓使用者得以隨身硬碟建立其私有的雲端儲存空間,使得駭客得藉由上述華碩路由器的設計漏洞直接竊取使用者於隨身硬碟內所儲存的資料。FTC並於起訴聲明中指出,駭客利用華碩路由器產品與相關服務的漏洞,於2014年間成功入侵超過12,900多位產品使用者的雲端儲存空間。除此之外,使華碩更加備受譴責的是,當該漏洞被發現之後,其並未主動向產品的使用者強調產品存在該資安問題,更未告知使用者應下載更正該設計漏洞的軟體更新,因此FTC始決定對華碩進行起訴。
英國Farm Data Principles組織(下稱FDP,前身為英國農場資料委員會(The British Farm Data Council)),在2024年2月26日英國農業科學技術跨黨派小組(All Party Parliamentary Group for Science & Technology in Agriculture)於西敏寺辦理的會議,正式宣告農場資料認證計畫,FDP強調因目前欠缺資料治理原則,導致缺乏信任等資料使用障礙,並指出若未事先約定資料如何使用等,將致無法明確保護資料。截至目前為止,已經有7個組織取得完全(Full)或臨時(Provisional)認證。 農場資料認證計畫包含四大核心要求,分別為: 1.「您的資料是您的資料(YOUR DATA IS YOUR DATA)」:如強調應由資料生成者擁有及管控資料,且未經其許可,不得接觸、儲存、共享或銷售資料,以及應明確說明參與資料處理的對象等。 2.「通過認證的組織清楚資料共享的價值和好處(CERTIFIED ORGANISATIONS ARE CLEAR ABOUT THE VALUE AND BENEFIT OF DATA SHARING)」:如應針對資料使用範圍及方式,提供明確說明,以及必須解釋如何整合資料及其衍生的價值等。 3.「通過認證的組織須確保資料安全(CERTIFIED ORGANISATIONS KEEP YOUR DATA SAFE)」:如為維護資料安全,應採取適當的資料安全標準及規劃資料外洩處理流程等。 4.「通過認證的組織須努力使資料變得簡單(CERTIFIED ORGANISATIONS STRIVE TO MAKE DATA EASY)」:如提供資料相關教育訓練,以及確保組織能夠回應請求或投訴等。 為因應農業資料於研發過程中的資料應用風險,資策會科法所創意智財中心協助農業部研擬「智慧農業科技研發資料源頭查檢說明手冊」,並於2024年3月14日正式發布,相關手冊所附之資料管理查檢表,可協助智農科技研發者針對資料取得、使用及管理,事先進行整體性規劃,並與不同的資料提供者及合作對象就資料權利義務約定清楚。其中針對資料管理,更依照資料生成、保護及維護的標準化作業流程,設計各階段相應的管控要項,確保農業資料持續處於有效管理的狀態,以降低資料潛在風險,促進資料流通應用。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國加州通過《基因資訊隱私法》針對基因資訊建立個資保護機制美國加州州長於2021年10月6日正式簽署《基因資訊隱私法》(Genetic Information Privacy Act, GIPA), 將於2022 年 1 月 1 日生效。GIPA在聯邦法和州隱私法的框架下,補充建立基因資訊保護機制,規範無醫護人員參與的「直接面對消費者基因檢測公司」(Direct-to-consumer genetic testing company,下稱DTC公司)之個資保護義務,並要求DTC公司執行下列消費者基因資料(去識別化資料除外)之蒐集、利用、揭露,須獲消費者明示同意: 利用DTC公司產品或服務所蒐集之基因資料,應取得同意。其同意書須載明近用對象、共享方式,以及具體利用目的。 初步測試完成後儲存生物樣本,應取得同意。 目的外利用該基因資料或樣本,應取得同意。 向服務提供商外之第三方傳輸或揭露該基因資訊或樣本,應取得同意。其同意書須載明該第三方之名稱。 分析行銷或第三方依消費紀錄所進行之促銷,應取得同意。 上開同意之取得,不可使用黑暗模式(dark patterns)誤導消費者,並必須針對資料或樣本採取合理安全維護措施。 GIPA也新增消費者權利,保障消費者近用權和刪除權,DTC公司須制定政策,使消費者易於近用基因資料、刪除帳戶與基因資料、銷毀生物樣本等,並須於消費者依法撤回同意後30日內銷毀之,不得因行使權利而有差別待遇。DTC公司若GIPA違反規定,消費者擁有私人訴訟權。
英國競爭與市場管理局發布人才競爭指引2025年9月9日英國競爭與市場管理局(Competition and Markets Authority,簡稱CMA)發布人才競爭指引(Competing for Talent),說明企業在勞動市場中採取何種行為可能會違反競爭法。 指引中指出三項於勞動市場中可能會違反競爭法的行為,分別是: (1)禁止挖角(no poach):指企業同意不向其他企業招募現職員工,或同意在未經他企業許可前,接觸或招募該公司的現職員工,此一行為可能違反競爭法;惟須考量與禁止招募條款(no-solicitation clauses)之差異,禁止招募條款係為避免企業離職員工或合作企業於一定期間內直接或間接招募企業員工、客戶或其餘合作夥伴,禁止招募條款於合理必要範圍內之限制並不違反競爭法。 (2)固定薪資(wage fixing):此為CMA近期的執法重點,指二個以上之企業就薪資及員工福利達成協議,包含薪資調漲幅度、設定薪資上限,或是依產業工會建議薪資來固定員工薪資等等。 (3)交換競爭敏感資訊(exchange of competitively sensitive information):係指競爭對手間不應交換競爭敏感資訊,包含定價方式、商業策略等等,即使接收方未根據獲得的敏感資訊採取對應措施,提供資訊方仍被認定為違反競爭法。 上述協議不以正式或是書面之方式達成一致為必要,企業間的社交聯繫、非正式的互動或君子協議(gentleman’s agreements)均屬之,且皆可能違反競爭法,違法之企業可能會面臨全球營業總額10%的罰款、禁止參與政府採購、面臨私人損害賠償訴訟等結果。 近年勞動市場與競爭法之議題正逐漸受到重視,除了英國,美國、歐盟、日本等亦發布相關指引文件,或對違反競爭法之企業進行調查或裁罰。我國公平交易委員會目前尚未針對此議題提出明確的論述,企業於勞動市場中限制競爭之行為,究竟如何適用公平交易法或屬勞動法範疇,仍有待相關部會進一步討論,相關國際發展趨勢仍可持續觀察作為我國公平交易法制發展後續參考方向。
美國「人工智慧應用管制指引」美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。