日本經濟產業省(下稱經產省)於2023年11月22日發布《促進資安攻擊受害資訊共享檢討會最終報告書》(サイバー攻撃による被害に関する情報共有の促進に向けた検討会の最終報告書),主張共享資安攻擊受害資訊,掌握資安攻擊全貌,防止損害範圍擴大。經產省提出具體建議如下: 1.促進各專門組織間之資訊共享:藉由專門組織間的資訊共享,及早採取適當因應措施,避免損害持續擴大,並降低受害成本。所謂專門組織包含資安廠商、資安監控中心(Security Operation Center, SOC)營運商、防毒廠商,與依法令成立從事資安事件諮詢與分析之非營利組織,例如:一般社團法人日本電腦網路危機處理暨協調中心(一般社団法人JPCERTコーディネーションセンター),以及一般財團法人日本網路犯罪對策中心(一般財団法人日本サイバー犯罪対策センター)等。 2.共享無從識別受害組織之資訊:為加快資訊共享,經產省建議將資料去識別化至無從識別受害組織之程度,即可不經受害組織同意而共享資訊。 3.提出《攻擊技術資訊處理與活用指引草案》(攻撃技術情報の取扱い・活用手引き(案)):為提升專門組織共享資訊成效,經產省於指引中彙整受害組織資料去識別化作法,以及各專門組織間共享攻擊技術資訊之具體策略。 4.於保密協議中加入免責條款:經產省建議於受害組織與專門組織簽訂之保密協議中,加入專門組織免責條款,使專門組織具有利用或揭露攻擊技術資訊裁量權,對於利用或揭露資訊,致生受害組織被識別等損害時,非因故意或重大過失不須負擔法律責任,以利推動資訊共享。
基因改良作物命運大不同身為世上最大基因改良( GMO)棉花生產者的 中國大陸 ,已經批准將經過基因改良的混種棉花進行商業化,預料可以解決生活日用品上的短缺。相對於此, 歐盟 的農業部長們,卻對於是否批准編號1507的基因改良玉米,陷入一個進退維谷的困境。但是經過8年激烈的反對, 丹麥 卻允許基因改良玉米的進口。 而在 美國 有 85﹪的大豆,76﹪的棉花,45﹪的小麥是經過基因改良的。至於 澳洲 農業與資源經濟局則最近則對基因改良作物做出一份報告,認為各省禁止基因改良食品會減小經濟效益,使 澳洲 面對世界各地日益增多的基因改良作物發展,屈居弱勢。至終可能會在十年後造成1.5億到6億澳幣的損失。
歐盟執委會通過「歐洲創新議程」,加速深度技術創新並資助新創事業歐盟執委會(European Commission, EC)於2022年7月5日通過「新歐洲創新議程」(New European Innovation Agenda,下稱創新議程),藉由引領創新,特別是在「深度技術」(Deep Tech),例如AI、量子科學、光子技術等領域之創新,強化歐洲在綠色轉型和數位轉型的中心角色,並為氣候變遷及網路威脅等迫切的社會問題,提供創新的解決方案,以減少能源依賴、改善民眾健康,並繁榮歐洲經濟。創新議程包括以下5項旗艦項目: (1)資助新創公司(start-ups):使歐洲私人機構及其他私人投資者更願意投資於「深度技術」之新創公司。除此之外,簡化上市規則,使公司上市成本減少,以增加公司上市意願,更易於向公眾募集資金。 (2)重視實驗場域及創新採購:讓創新的企業可藉由「監理沙盒」(Regulatory Sandbox)等實驗場域(experimentation spaces)驗證其概念,政府則加強對創新產品和服務的公共採購(public procurement),促進創新研發。 (3)打造歐洲創新生態系(European Innovation Ecosystems):支持包括低度開發地區在內的區域,建立多個「區域創新谷」(regional innovation valleys),以強化歐洲創新者間的連結,並促進會員國投入至少100億歐元於各區域創新谷包含「深度技術」在內的創新專案。 (4)育才、攬才及留才:確保「深度技術」的人才能來到歐盟國家,並在歐盟國家間流動及發展,當中包括針對新創公司的創新實習生計畫、幫助新創公司尋找非歐盟人才的歐盟人才資料庫(talent pool)計畫、女性創業和領導計畫、新創公司員工有認股權(stock option)等。 (5)優化政策制定之流程及架構,促進歐盟內部協調一致:藉由開發可供各國比對的資料集(data set),以及對於新創公司設立階段(start-up)及成長階段(scale-up)之共通定義,提升並強化政策的傳播及落實,並確保在歐洲創新理事會論壇(European Innovation Council)有更好的政策協調。
美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。