一名南韓金姓男子以「LOUIS VUITON DAK」為名開設炸雞店,於2015年9月遭法國精品品牌Louis Vuitton Malletier(以下簡稱LV)提起商標侵權訴訟,法院判決金姓男子應停止使用與LV近似的商標和圖騰。近日(2016年4月)法院認為金姓男子未遵從禁令,仍持續使用與LV商標近似的店名,判決金姓男子賠償1450萬韓元(約41萬元台幣)。
金姓男子以韓文全雞「tongdak」的諧音,將炸雞店命名為「LOUIS VUITON DAK」,並於炸雞外帶餐盒及紙巾上,印製使用與LV商標圖騰極為相似的圖案。此舉引來LV的不滿,於2015年9月向南韓法院提起訴訟,認為金姓男子使用LV的近似名稱販賣炸雞,將對LV的品牌形象帶來嚴重損害。2015年10月,法院要求金姓男子立即停止使用近似LV的商標圖騰及店名,否則將處以一日50萬韓元的罰款。金姓男子後將店名改為「chaLouisvui tondak」,然而LV仍認為該店名與其商標有部分雷同。法院同意LV的主張,認為金姓男子雖更改了店名拼法,但其讀音仍與「LOUIS VUITON DAK」幾乎相同,因此以一日50萬韓元的罰款金額,計算使用新店名的29日,判決金姓男子須向LV賠償1450萬韓元。
【本文同步刊登於TIPS網站(http://www.tips.org.tw)】
紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
歐洲區塊鏈數位基礎設施聯盟預計於2024年正式開始運作,將進一步擴大推動區塊鏈的公共應用服務歐洲區塊鏈夥伴關係(European Blockchain Partnership, EBP)的成員於2023年6月正式向歐盟執委會(European Commission, EC)申請成立區塊鏈的「歐洲數位基礎設施聯盟」(European Digital Infrastructure Consortium, EDIC),若審核通過,未來歐盟將有一個正式的機構負責推動區塊鏈的發展與應用。 歐盟執委會於2023年1月發布了「2030年數位十年政策計畫」(Digital Decade Policy Programme 2030, DDPP),為促進歐盟數位轉型的大規模部署及能力建構,達到DDPP所設定的具體目標,執委會提出跨(多)國專案(Multi-Country Projects, MCPs)的概念,期待整合歐盟、各成員國、私部門的資源,以實現單一成員國無法獨立部署的數位化基礎設施。 執委會參考2009年開始陸續成立的「歐洲研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),提出了「歐洲數位基礎設施聯盟」(EDIC)的規劃。EDIC並非由歐盟的資助計畫支持,而是由成員國申請(至少要包含3個成員國)成立以執行MCPs,EDIC具有法人格,並有獨立的財務來源;此外,EDIC成立後開放私部門參加。 2023年3月執委會發布的「數位歐洲2023~2024年工作計畫」(Digital Europe Work Programme 2023-2024)中,即將「區塊鏈」列為MCPs的重要發展項目之一。2023年6月15日於瑞典舉辦的歐盟數位大會(Digital Assembly 2023)上,執委會表示EBP及歐洲區塊鏈服務基礎設施(European Blockchain Services Infrastructure, EBSI)的相關成員國已遞交EDIC的申請。 斯洛維尼亞共和國(Republic of Slovenia)的區塊鏈小組負責人Nena Dokuzov是成立聯盟的主要推動者之一,其受訪時表示,EBSI從2018年以來,主要是由執委會以專案方式支持,未來聯盟成立以後,將能集結更充足的資源,強化歐洲區塊鏈的治理和穩定性,進一步地擴大推動歐洲區塊鏈的公共應用服務。我國「司法聯盟鏈」於2022年成立,為我國第一個跨部會、大規模的區塊鏈應用案例,並制定了跨組織協作標準規範(簡稱b-JADE),未來可持續觀測歐盟區塊鏈聯盟的發展,作為我國的參照。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐洲自律聯盟成立以塑造對兒童更好的網路環境如何確保兒童上網安全,為歐盟數位議程(Digital Agenda)的七大目標之一。而近年來網路內容蓬勃與快速發展,更大幅加速了兒童上網的趨勢。據歐盟執委會於2011年12月的公開資料顯示(IP/11/1485),歐洲兒童平均7歲即開始接觸網路。目前有超過38%的9-12歲兒童在社交網站上有個人資訊,有30%以上的兒童是藉由行動裝置上網。如此高的上網比率,讓各業者有共識以提供兒童更好的上網環境。由蘋果、微軟、Google等跨國企業為首的二十餘家業者組成了自律組織,以提供歐盟地區的兒童更好網路內容環境而努力。 該自律聯盟於2011年12月正式成立,並以五個面向採取相關行動:簡單且強大的工具-能夠搜尋於任何裝置上可能對孩童有害的內容;分齡隱私設定-使用者可限定公布資訊予特定族群;更廣泛的內容分級:提供家長易於理解的年齡內容分級;更廣泛的家長控制工具-積極推動使用者有善的工具;兒童色情內容有效移除-與執法單位與保護熱線等積極合作,將兒童色情內容快速下架。 各業者承諾就其營業項目、產品、服務內容等皆須符合此自律規範,並成立工作小組以協助歐盟執委會處理相關議題。
美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。