加拿大聯邦政府於2016年4月14日向國會提交「醫助善終」法案,即C-14法案(Bill C-14),以修正加拿大的刑法(Criminal Code)相關規定;另外,亦會一併修正年金法(Pension Act)、矯正和有條件釋放法(Corrections and Conditional Release Act)、加拿大部隊成員和退伍軍人重建和賠償法(Canadian Forces Members and Veterans Re-establishment and Compensation Act)相關名詞之解釋。
該法案通過後,醫生、護士、藥師及其他協助執行任務之人,將可對符合資格之病人,以醫療方式協助其結束生命,而免於背負刑法加工自殺罪之責任。
可以使用醫療方式結束生命(Medical Assistance in Dying)之人,必須符合以下列出的所有條件,缺一不可:
(1)須為加拿大籍;或是在加拿大停留至少一段時間,可使用加拿大的醫療健康服務者。
(2)年齡至少18歲以上,且可對其健康自主作出決定。
(3)患有極為嚴重且不可治癒之重大醫療情況。
(4)在沒有外界壓力之情形下,自願性的要求以醫療方式結束其自身之生命者。
(5)在接受醫療方式結束生命前,須簽署知情同意書(Informed Consent)。
加拿大議會認同那些處於極為嚴重、難以忍受且無法治癒疾病之族群,有向專業醫療人員尋求結束自己生命的權利;但這需要非常健全的法令體系,以避免任何可能的錯誤或濫用,因為生命一旦消逝就再也無法回復。對於處於弱勢之族群,例如生命品質不佳者、老年人、重病或殘障者,亦應尊重其生命之固有價值,保護他們免於被引誘結束自己的生命是非常重要的。
這部法案是一個衡平的法案,同時保護弱勢族群之生命價值,也保護了特殊族群尋求醫療方式結束自己生命的權利。新法案需待國會投票審議通過後,才能生效。
中國大陸文化部於日前頒布「網絡文化經營單位內容自審管理辦法」,要求「網絡文化經營單位」配置內容審核人員、建立內容管理制度。就其提供的數位産品、內容服務進行自我審核,以確保內容之合法性。 據中國大陸文化部表示,本次辦法的制定,亦是為了落實其國務院轉變政府職能、簡政放權的政策方向。特別在網路音樂、行動遊戲上,期待能透過企業自律機制,達到市場的有效管理。然而,由辦法中規定「按照法規規章規定應當報文化行政部門審查或者備案的網絡文化産品及服務,自審後應當按規定辦理」看來,此項「內容自審機制」暫時不會取代任何現有審批、備案制度。至於未來運作經驗的累積,相關規範是否會有所調整,以確實達到行政審批事項的下放、簡化目標,仍有待持續追蹤觀察。 此辦法預計於2013年12月1日起施行。未來相關內容審核工作,須透過經中國大陸文化行政部門培訓、考核,取得「內容審核人員證書」的人員進行。同時,在內容管理制度上,企業必須規範內容審核工作職責、標準、流程,保障內容審核人員獨立審核權限,並在內容管理制度完成制定後,報請所在地文化行政部門備案。對於台灣業者而言,在辦法施行後,應留意其合作之大陸「網絡文化經營單位」,是否符合上述規範,以避免對其產品拓展產生不利影響。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
歐盟發布第三版支付服務指令(PSD3)草案,強化消費者保護與改善產業環境歐盟執委會(European Commission)於2023年6月28日提出第三版支付服務指令(Third Payment Services Directive, PSD3)草案,目前預計於2024年底前通過最終版本,並於2026年施行。 相較第二版支付服務指令(PSD2),PSD3強化歐盟電子、數位支付和金融服務規範,補強安全性(Security)、透明度(Transparency)與促進創新(Innovation),建立更適合歐盟的支付架構。其旨在保護消費者權益和個人資訊,改善支付產業競爭環境,提高消費者對資料掌控度,促進創新金融產品服務發展。 PSD3修正重點歸納如下: 一、消費者保護:強化對未經授權交易之保護,完善支付詐欺或支付錯誤之賠償方案,減少消費者潛在損失。 二、開放銀行(Open Banking):持續推動開放銀行發展,透過加強規範第三方支付服務提供者(Third party payment provider, TPP)與提供更標準化與更安全的應用程式介面(Application Programming Interface, API),促進創新金融產業服務發展。 三、支付系統安全性:強化客戶身分認證(Strong Customer Authentication, SCA),促進支付過程的透明度與安全性。 四、因應新型詐欺:導入新規定與工具對抗日益增加的網路詐欺風險。 五、跨境支付:加強跨境支付措施與降低成本,推動歐盟市場一體化。 六、支付創新與多元化:導入區塊鏈或其他更先進的即時支付系統。 七、監管:制定更明確的法規,加強各方監管,確保市場公平與穩定。
愛沙尼亞首創網路市民證吸引外商與新創家進駐位於歐洲東北部全國人口約僅有130萬的愛沙尼亞為了吸引更多外資與新創家前往,除了廣推網路登記公司設立、網路銀行,以及透過網路管理公司營運等改善投資環境相關措施之外,更領先全球推出網路市民證「e-Residency Card」。 隨著科技與網路的快速發展,網路市民證的推出打破了國家與地域疆界的限制,讓即使不住在愛沙尼亞的人士也可利用網路於18分鐘內完成登記設立公司流程。申請愛沙尼亞網路銀行相關服務與帳號、運營公司、進行線上簽章/簽約,甚至完成報稅等,讓外資、新創家大幅簡化公司申請設立程序與進入門檻。 此外,網路市民證也提供新創事業免除營業所得稅,吸引了眾多新創家前往該國創業,並於該項政策施行的前七個月內讓超過4,000名的新創家前往申請。同時,由於愛沙尼亞為歐盟會員國之一,因此也使外資與新創家在愛沙尼亞投資設立公司後,等同於在歐盟境內設立營運據點,成為進入歐盟市場的敲門磚。 正因為網路市民證所獲得的成功迴響,愛沙尼亞政府進而推行網路市民計畫「e-Residency Program」強化此項優惠政策,預計讓網路市民人數增加至數百萬人,活絡愛沙尼亞的經濟產業體系,進而傳播愛沙尼亞文化與知識。