加拿大聯邦政府於2016年4月14日向國會提交「醫助善終」法案,即C-14法案(Bill C-14),以修正加拿大的刑法(Criminal Code)相關規定;另外,亦會一併修正年金法(Pension Act)、矯正和有條件釋放法(Corrections and Conditional Release Act)、加拿大部隊成員和退伍軍人重建和賠償法(Canadian Forces Members and Veterans Re-establishment and Compensation Act)相關名詞之解釋。
該法案通過後,醫生、護士、藥師及其他協助執行任務之人,將可對符合資格之病人,以醫療方式協助其結束生命,而免於背負刑法加工自殺罪之責任。
可以使用醫療方式結束生命(Medical Assistance in Dying)之人,必須符合以下列出的所有條件,缺一不可:
(1)須為加拿大籍;或是在加拿大停留至少一段時間,可使用加拿大的醫療健康服務者。
(2)年齡至少18歲以上,且可對其健康自主作出決定。
(3)患有極為嚴重且不可治癒之重大醫療情況。
(4)在沒有外界壓力之情形下,自願性的要求以醫療方式結束其自身之生命者。
(5)在接受醫療方式結束生命前,須簽署知情同意書(Informed Consent)。
加拿大議會認同那些處於極為嚴重、難以忍受且無法治癒疾病之族群,有向專業醫療人員尋求結束自己生命的權利;但這需要非常健全的法令體系,以避免任何可能的錯誤或濫用,因為生命一旦消逝就再也無法回復。對於處於弱勢之族群,例如生命品質不佳者、老年人、重病或殘障者,亦應尊重其生命之固有價值,保護他們免於被引誘結束自己的生命是非常重要的。
這部法案是一個衡平的法案,同時保護弱勢族群之生命價值,也保護了特殊族群尋求醫療方式結束自己生命的權利。新法案需待國會投票審議通過後,才能生效。
2009年2月美國總統歐巴馬簽署美國振興經濟方案,釋出72億美元擴展寬頻網路連結應用,以網路開放為前提,要求聯邦通訊委員會提出國家寬頻計劃。美國聯邦通訊委員會(FCC )在2010年3月12日公布將推動一項歷時十年的遠大計畫,希望透過建立高速網際網路,重塑美國媒體與科技優先順序的概念。該計畫預定2010年3月16日送交國會。 這項計畫反映美國正視寬頻網路正逐漸成為取代電話與廣播電視業的普通媒介,工作重點在於強化網際網路存取方便性。該項計畫的重點包括補助網際網路提供者佈建偏遠地區的網路服務、拍賣頻譜以供無線寬頻設備使用,以及發展新型態的有線電視與上網功能之全面式機上盒。 此一計畫牽涉數百億美元的聯邦經費,但FCC認為,應可透過拍賣頻譜自給自足。此外,該計畫中的部分建議,尚須國會採取行動與業者支持才能落實,至於使用者恐怕要在數年後才能看到效果。 目前美國在使用寬頻與高速上網等方面落後包括亞洲國家在內的許多國家,約超過30%的美國人無法上網,原因是負擔不起或是沒有意願使用。而FCC的計畫希望能將美國打造成一個完全網路連結的環境,透過還有待矽谷研發的無線裝置讓民眾能快速上網取得健保資訊、進行網路學習,以及進行警民連線。 不過,FCC必須審慎處理既有業者上網費率與品質的問題,此外,不少電視業者以供公眾利益為由反對,並抗拒交回頻譜,以及認為這樣計畫將會導致訊號覆蓋及干擾的問題。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
世界經濟論壇發布《贏得數位信任:可信賴的技術決策》世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。 由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟: 1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。 2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。 3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。 4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。
簡介美國700MHz頻段之使用規劃