美國最高法院裁定暫停執行環保署「清潔電力計畫」

  美國最高法院在2016年2月9日,以暫時處分裁定美國環保署在「清潔電力計畫」(Clean Power Plan)下所擬訂的「對固定污染源的碳排指引:電業發電單位」( Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units ),在北新(Basin)電力公司等對其所提起訴訟期間,暫緩實施。

  所謂環保署「清潔電力計畫」(Clean Power Plan),係為因應氣候變遷,在2015年8月由美國總統在演說中公布,並於同年10月由美國環署公布「對固定污染源的碳排指引:電業發電單位」最終內容。該計畫的具體目標乃以2005為標準,在2030減少碳排32%,各州並得自行訂訂計畫;預期的計畫效果則包含:保護一般的美國家庭、促進經濟,與協助一般美國家庭節省費用。

  由於該案涉及大規模以天然氣、風力與太陽能取代燃煤電廠,2015年的10月23日至11月5日間,由北新與其他近60家電業向聯邦哥倫比亞特區上訴法院(United States Court of Appeals for the District of Columbia Circuit)提出申請暫緩實施之聲請。2016年1月21日 該上訴法院駁回聲請,同月26日原本提出聲請的電業再向最高法院提出暫緩實施之聲請。

  在向最高法院的聲請中,業者主張:因系爭指引所規範排放限制量為任何現行發電業者(Electricity Generating Units, EGUs)無法透過現行科技或流程改善單獨達成,將迫使整個電力產業作出轉變。業者並指出,由於淘汰既有電廠與建立新的再生能源計畫皆須長時間的努力來執行,若欲在2022年達成相關目標,電業必須現在就展開行動。

  而最高法院也認同業者的主張,指出:因訴訟曠日廢時,若不暫緩實施系爭指引,立即、無法回復、且特別重大的損害將持續發生;且美環署仍將取得該計畫所欲取得之效果,縱使系爭指引最終被廢止。

  基於上述理由,最高法院以暫時處分裁定系爭措施暫緩實施。

相關連結
※ 美國最高法院裁定暫停執行環保署「清潔電力計畫」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7259&no=55&tp=1 (最後瀏覽日:2025/12/29)
引註此篇文章
你可能還會想看
從德國法談濫發商業電子郵件之規範

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國白宮於2019年5月發布總統令,提升聯邦及全國之資安人力

  美國白宮(the White House)於2019年5月2日發布第13870號總統令(Executive Order),旨在說明美國的資安人力政策規劃。   於聯邦層級的資安人力提升(Strengthening the Federal Cybersecurity Workforce)上,由國土安全部(Department of Homeland Security, DHS)部長、管理預算局(Office of Management and Budget, OMB)局長及人事管理局(Office of Personnel Management, OPM)局長共同推動網路安全專職人員輪調工作計畫(cybersecurity rotational assignment program),計畫目標包含:輪調國土安全部與其他機關IT及資安人員、提供培訓課程提升計畫參與者之技能、建立同儕師徒制(peer mentoring)加強人力整合,以及將NIST於2017年提出之國家網路安全教育倡議(National Initiative for Cybersecurity Education, NICE)和網路安全人力框架(Cybersecurity Workforce Framework, NICE Framework,以下合稱NICE框架),作為參與者的最低資安技能要求。同時上述部長及局長,須向總統提交報告說明達成上述目標之執行方案。   於國家層級的資安人力提升(Strengthening the Nation’s Cybersecurity Workforce)上,則表示商務部部長(Secretary of Commerce)、勞工部部長(Secretary of Labor)、教育部部長(Secretary of Education)、國土安全部部長與其他相關機關首長,應鼓勵州、領土、地方、部落、學術界、非營利與私部門實體於合法之情況下,自願於教育、訓練和人力發展中納入NICE框架。此外,將每年頒發總統網路安全教育獎(Presidential Cybersecurity Education Award),給予致力於傳授資安知識之中小學教育工作者。   綜上所述,美國將透過制度、教育與獎勵等方式培育資安人才,提升國內資安人才的質與量,以因應越來越險峻的資安威脅與風險。

歐盟提出人工智慧法律框架草案

  歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。   新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。   未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。

TOP