當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。
在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
本文為「經濟部產業技術司科技專案成果」
歐洲資料保護委員會(European Data Protection Board, EDPD)於2020年4月24日公布COVID-19疫情期間使用位置資料和接觸追蹤工具指引文件(Guidelines 04/2020 on the use of location data and contact tracing tools in the context of the COVID-19 outbreak),就針對COVID-19疫情期間,歐盟成員國利用定位技術和接觸追蹤工具所引發的隱私問題提供相關指導。 EDPD強調,資料保護法規框架於設計時即具備一定彈性,因此,在控制疫情和限制基本人權與自由方面可取得衡平。在面對COVID-19疫情而需要處理個人資料時,應提升社會接受度,並確保有效實施個資保護措施。然而資料和技術雖可成為此次防疫重要的工具,但此次的資料利用鬆綁應僅限用於公共衛生措施。歐盟應指導成員國或相關機構,採取COVID-19相關應變措施時,若涉及處理個人資料,應遵守有效性、必要性、符合比例等原則。本次指引針對利用位置資料和接觸追蹤工具的特定兩種情況,闡明其利用條件和原則。情況一是使用位置資料建立病毒傳播模型,並進一步評估及研擬整體有效的限制措施;情況二是針對有接觸史病患進行追踪,目的是為通知確診病人或疑似個案以進行隔離,以便儘早切斷傳播鏈。 EDPB指出,GDPR和電子隱私保護指令(ePrivacy Directive)均有特別規定,允許各成員國及歐盟層級公共單位使用匿名及個人資料監控新冠病毒的傳播,並呼籲透過個人自願性安裝接觸追蹤工具。
美國「刑事鑑識演算法草案」美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。
從「數位休閒娛樂產業」之法制需求談我國娛樂業法制規範之可能性 受傷的機車騎士就機器自動駕駛的車輛控訴過失駕駛美國通用汽車公司(General Motors,下稱通用汽車)於2018年01月間向美國運輸部(United States Department of Transportation)遞出請求展示雪弗蘭(Chevrolet)第4代自動駕駛車(此款車種無裝備方向盤與踏板,號稱世界上第一輛可以自我安全駕駛,且無需人類介入駕駛的車輛)的申請,不久後關於以下車禍事件的訴訟即遭提起。 根據Oscar Willhelm Nilsson(即原告,下稱Nilsson)於2018年01月22日向美國舊金山區地方法院針對前開車禍事件提起訴訟的主張,於2017年12月07日早上,其在加州舊金山Oak Street的中央車道上騎乘機車往東行駛,Manuel DeJesus Salazar(即被告,下稱Salazar)於同時地駕駛由通用汽車製造之Chevrolet Bolt vehicle(下稱自駕車),並開啟自動駕駛模式且雙手放開方向盤。Nilsson原騎乘於自駕車後方,不久,自駕車自Nilsson正前方變換車道至左側,Nilsson則繼續筆直前行,但自駕車又隨即往回駛入Nilsson直行騎乘的車道,因此撞擊Nilsson摔倒在地。據此,Nilsson主張通用汽車公司欠缺對於自駕車的自我操作應符合交通法規及規定所賦之注意義務,換言之,自駕車前揭操作車輛駕駛的行為(未注意其他正在行駛的駕駛人而轉換至比鄰車道)具有過失,造成Nilsson受到嚴重的生理及心理損害,且無法工作,產生高額的醫療、護理費用,故請求法院判決原告即Nilsson之主張不少於7萬5千美元之損害賠償、懲罰性損害賠償、律師委任費用以及其他適當且公正之侵權損害賠償等有理由。 然而,根據先前加州車輛管理局所提之文件,通用汽車對Nilsson所描述之車禍經過提出了以下爭執,通用汽車表示自駕車側面有一條長磨損痕跡,應是當時右邊的車道正要匯入中央車道,而自駕車正在自我校正回車道中央,Nilsson卻騎乘機車從兩個車道中間切出來,導致與自駕車發生擦撞。此外,案發當時自駕車的時速為了順應車流而保持在每小時12英里(每小時19公里)行進,而摩托車卻是以大概每小時17英里(每小時27公里)行進,故自駕車應無不當駕駛之情形,反應由機車騎士Nilsson負擔肇事責任,因其未在確認安全之情況下,即從自駕車右側超車,以上通用汽車反駁Nilsson主張的結論,更與舊金山警察局的報告結果不謀而合,即舊金山警察局認為Nilsson在確定安全以前,就嘗試要超越自駕車。 此外,在前開訴訟提起前的2018年01月14日至01月20日的當週,加州車輛管理局表列出自2014年至2018年間的54起自動駕駛車意外報告,大部分的狀況係由駕駛人(而非自動駕駛車本身)對事故負責(雖開啟自動駕駛模式,但駕駛人仍在特定條件下需要自行駕駛)。 即便前開各個報告看似不利Nilsson,但Nilsson的律師Sergei Lemberg卻表示警方的報告應是有利Nilsson,因自駕車早在車禍發生前就已經發覺Nilsson,但卻沒有預留足夠的時間剎車與閃避,因此通用汽車公司所稱之主張並不足採信,更可見自駕車的行為是危險且難以被預測的。 就此,一位南加大研究自駕車法律問題的法律系教授Bryant Walker Smith表示,未來發生事故的時候,駕駛人在大多數的狀況下比較不會被苛責,但自動駕駛系統會被檢討應該可以做得更完善。 (註:本件訴訟仍在繫屬中,尚未判決。)