美國FDA(Food and Drug Administration)於2019年11月22日發布「保密證書(Certificates of Confidentiality, CoC)」指引草案。保密證書之目的在於防止研究人員在任何聯邦、州或地方之民事、刑事、行政、立法或其他程序中被迫揭露有關研究參與者可識別個人之敏感性資料,以保護研究參與者之隱私。保密證書主要可分為兩種,對於由聯邦所資助,從事於生物醫學研究、行為研究,臨床研究或其他研究,於研究時會收集可識別個人之敏感性資料之研究人員而言,保密證書會依法核發予該研究人員,稱為法定型保密證書(mandatory CoC);而對於從事非由聯邦所資助之研究的研究人員而言,原則上保密證書不會主動核發予該研究人員,惟當研究涉及FDA管轄之產品時,可由FDA自行裁量而核發保密證書,稱為裁量型保密證書(discretionary CoC),本指引草案旨在提供裁量型保密證書之相關規範。 FDA建議裁量型保密證書之申辦者先自問以下四個問題,且所有問題之答案應該皆為肯定:(1)申辦者所參與之人體研究是否收集可識別個人之敏感性資料?(2)申辦者是否為該臨床研究之負責人?(3)申辦裁量型保密證書之人體研究是否涉及受FDA管轄之產品的使用或研究?(4)申辦者之研究措施是否足以保護可識別個人之敏感性資料之機密性? 於FDA完成審查後,將向申辦人傳送電子回覆信件,表明是否核准裁量型保密證書。若結果為核准,則該電子回覆信件即可作為保密證書。該保密證書之接受者應執行法律所規定以及FDA於電子回覆信件中所要求之保證事項,以保護人體研究參與者之隱私。
美國USPTO建議加強非法定重複專利之期末拋棄聲明,避免藥物專利叢林美國專利商標局(United States Patent And Trademark Office, USPTO)於2024年5月10日提議37 C.F.R §1.321修法草案並徵求公眾意見,旨在針對「非法定重複專利」(Nonstatutory-type double patenting)加強專利權「期末拋棄聲明」(Terminal Disclaimer)之要求,以減輕專利叢林現象。 專利權期末拋棄聲明係為避免專利申請人對於申請中,或已取得專利權之前申請案,利用些微變化再次申請專利,構成非法定重複專利,藉此延長專利期限。故現行規定要求於後案申請時應聲明專利權期限與前申請案同時到期,否則將不核准專利之申請。 USPTO提議於聲明中新增一項要求,亦即申請人應聲明後案申請之專利未藉由期末拋棄聲明直接或間接地綁定無效專利,否則同意所申請之專利無法執行(enforceable)。換言之,與後案申請專利所綁定的前案專利,若已被美國聯邦法院或USPTO判定為不具有專利性、專利無效,或是因技術實行上困難而放棄專利者,則透過專利權期末拋棄聲明綁定之專利將全部無法執行。藉此盼能有效去除產業競爭對手間濫用專利制度而建立龐大專利組合之行為模式,並促進研發創新和公平競爭。 此項修法草案被美國法學界認為是針對「藥品專利」而來,亦即USPTO欲藉此回應美國拜登政府致力打擊藥價之政策,並減輕長期受到關注之藥品專利叢林現象,以促進學名藥進入市場,達到降低藥品價格之目的。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
德國電信服務法下訊息儲存服務提供者之法律責任