美國國會於1980年通過了拜杜法案(Bayh-Dole Act),正式名稱為1980年大學與小型企業專利程序法(University and Small Business Patent Procedures Act of 1980, 35 U.S.C. 200 et seq.)。經濟學人(The Economis)曾對美國拜杜法評價為「可能是過去半世紀在美國所成立之最具創見之法律」,其目的是讓大學、中小企業等與聯邦機構締約,執行聯邦政府資助的研發計畫後仍能保有其研究成果之專利,亦即將此研究成果的專利申請權歸屬於受資助之大學或中小企業,而非聯邦政府。
拜杜法案(Bayh-Dole Act) 35 U.S.C. § 201(c)對立約人(contractors)定義為,任何簽署資助協議的自然人、小型企業、或非營利機構。而權利歸屬部分,規定於35 U.S.C. § 202,非營利機構、中小企業等與聯邦機構簽訂資助契約之承攬人可以選擇是否擁有受資助發明(elect to retain title to any subject invention)之權利。再者,立約人負責專利管理事務之人員,應於知悉受資助發明的合理期間內,向聯邦機構揭露該發明,若未於合理期間內揭露,則該發明歸屬於聯邦機構。並且,立約人應於揭露發明後2年內,以書面行使其選擇權,逾期則該發明權利歸屬於聯邦機構。另 35 USC § 203有介入權規定,聯邦機構認為有必要時,得要求立約人、其受讓人或其專屬被授權人將發明專屬、部分專屬(partially exclusive)或非專屬授權予申請人,聯邦機構得自行為之。
本文為「經濟部產業技術司科技專案成果」
歐盟執行委員會依展望2020 (Horizon 2020)於2016年4月14日至15日召開未來工廠公私夥伴合作 (FoF cPPP)研討會,並展示目前資助的研究與創新成果,透過本計畫將協助歐盟內製造業,特別是中小企業,將資通訊及關鍵技術與整個工廠生產鏈結合,達到整體製造業升級。 計劃具體目標如下:(1)以資通訊技術為基礎的解決方案導入製造業生產過程,增加產品獨特性、多樣化、可大規模生產,及保有高度靈活性,以迅速反應瞬息萬變的市場。(2)縮短進入市場的研發製程,提升產品質量,並透過數位化設計、成型、模擬實作及預測分析,提升工作效率。(3)改善整合生產環境的人為因素。(4)透過現代資通訊基礎的生產技術使得資源、材料、能源更有持續性。(5)促進並強化製造領域的共同平台及其生態系統。(6)從獨特的地理位置創建虛擬價值鏈,從而善用優秀人才的潛力。 我國為整合新創能量,以創造製造業下一波成長動能,今年亦陸續公布「智慧機械產業推動方案」與「數位國家‧創新經濟發展方案」,以具高效率、高品質、高彈性等特徵之智慧生產線,透過雲端及網路與消費者快速連結,打造下世代工廠與聯網製造服務體系。
新加坡「智慧財產中心藍圖」(IP Hub Master Plan)自2013年起,新加坡綜合考量其天然資源匱乏之劣勢與位處東南亞經貿核心之優勢,提出「智慧財產中心藍圖」(IP Hub Master Plan),目標在10年內讓新加坡成為亞洲的全球智慧財產營運中心(IP Hub),藉以打造新加坡作為亞洲金融與法律中心之重要地位;「智慧財產中心藍圖」的具體規劃包含在「交易與管理」、「高值智財申請」與「爭議解決」等三大面向,成為匯聚亞洲且面向全球的智財營運中心。 在考量全球經濟成長力趨緩,世界各國紛紛加大投資創新與數位轉型的趨勢下,新加坡智財局(IPOS)於2017年再次更新這份藍圖:盤點自本藍圖提出迄今的各項執行成果,並探討如何與世界趨勢接軌。在更新版藍圖中強調未來智慧財產在具創新力公司資產內的比重將遠高於實體財產,對智財體制的依賴將與日俱增,新加坡應及早因應以提供新創產業包含智財保護、管理與最大化智財價值等協助,以打造未來產業競爭力。 更新版藍圖引用OECD「創新就是將創意帶往市場」之定義,智財產業將成為創新型經濟(innovation-driven economy)中的關鍵。根據IPOS估計,智財交易與管理活動將為新加坡在未來5年創造至少15億新幣的產值,而未來的挑戰在於提高「智財創造」的便利、「智財保護」的普及,以及「智財商業化」的推進等三大面向;因此IPOS將加強智財檢索與政府機關間合作、協助中小企業導入智財管理制度提升企業效益,並打造無形資產評價、交易與融資平台,以達成更新版藍圖所提出之挑戰目標。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
時尚奢華品牌-Gucci與服飾品牌-Guess間之商標戰爭Gucci America, Inc. (Gucci) 於2009年對Guess?, Inc. (Guess)提出商標侵權訴訟,美國聯邦地方法院(United States District Court, SDNY)於2012年5月在無陪審團審判的結果下,判定Guess禁止使用「紅-綠條紋」、「G字菱形圖」、及「環環相扣的G圖」等三項商標,並須賠償Gucci 466萬美元之損害賠償。 緣,Gucci聲明Guess係惡意侵害及仿冒Gucci的商標設計,企圖造成消費者的混淆誤認,並淡化Gucci的商標權,故針對「紅-綠條紋」、「G字菱形」、「環環相扣的G圖形」、及「手寫Guess logo」等商標設計聲明其禁止銷售、販賣及使用,並主張因Guess的惡意仿冒,請求1.2億美元的損害賠償。 Guess於訴訟過程中提出抗辯,(1) Guess無理由仿冒Gucci的商標、 (2) Gucci至少超過七年以上放任Guess使用其所聲稱的Gucci商標設計且未提出訴訟;此外,(3) 消費者並不會將Guess的產品與Gucci的產品誤認,因Guess與Gucci所訴求的客戶市場並不相同。 Scheindlin法官於裁定書中敘明,Gucci無法直接證明因Guess之商標侵害造成其品牌上的極大損害,故最終損害賠償金額僅判定466萬美元 。 本案之法院結果將影響其他時尚品牌之商標或產品外觀近似的侵權案件。