美國國會於1980年通過了拜杜法案(Bayh-Dole Act),正式名稱為1980年大學與小型企業專利程序法(University and Small Business Patent Procedures Act of 1980, 35 U.S.C. 200 et seq.)。經濟學人(The Economis)曾對美國拜杜法評價為「可能是過去半世紀在美國所成立之最具創見之法律」,其目的是讓大學、中小企業等與聯邦機構締約,執行聯邦政府資助的研發計畫後仍能保有其研究成果之專利,亦即將此研究成果的專利申請權歸屬於受資助之大學或中小企業,而非聯邦政府。
拜杜法案(Bayh-Dole Act) 35 U.S.C. § 201(c)對立約人(contractors)定義為,任何簽署資助協議的自然人、小型企業、或非營利機構。而權利歸屬部分,規定於35 U.S.C. § 202,非營利機構、中小企業等與聯邦機構簽訂資助契約之承攬人可以選擇是否擁有受資助發明(elect to retain title to any subject invention)之權利。再者,立約人負責專利管理事務之人員,應於知悉受資助發明的合理期間內,向聯邦機構揭露該發明,若未於合理期間內揭露,則該發明歸屬於聯邦機構。並且,立約人應於揭露發明後2年內,以書面行使其選擇權,逾期則該發明權利歸屬於聯邦機構。另 35 USC § 203有介入權規定,聯邦機構認為有必要時,得要求立約人、其受讓人或其專屬被授權人將發明專屬、部分專屬(partially exclusive)或非專屬授權予申請人,聯邦機構得自行為之。
本文為「經濟部產業技術司科技專案成果」
於2023年2月28日,歐盟議會( European Parliament )工業、研究和能源委員會( Committee on Industry, Research and Energy )就2022年公開之資料法草案( Data Act )提出修正報告,該報告支持資料法草案賦予使用者訪問、使用並共享其資料的權利,以發揮出工業資料的經濟潛力,並就資料法草案內容提出修改之報告(以下簡稱修改草案)。 以下就修改草案對於資料持有者權利之影響摘要說明如下: 1、對資料持有者之營業秘密的保護,資料持有者就其有營業秘密之資料,能要求使用者保護該資料的秘密性,並要求使用者要採取一定之保密措施,若使用者未能執行該保密措施,資料持有者可暫停資料共享; 2、資料持有者提供資料之對象為公司時,可對其請求之合理補償,該合理補償包含產生/處理資料與提供資料等讓資料可用的成本,惟該資料成本若可與其他資料請求分攤,則不應由單一使用者支付全部費用,且對於小/微型企業,不得請求超過提供資料的直接成本; 歐盟為使工業資料可充分發揮其效益,資料法草案旨在推動資料共享並建立相對的遊戲規則,此次修改草案從營業秘密與成本補償的角度切入,以保障資料持有者權利,該修改草案預計於3月中全體會議上進行表決,其規範對象包含有在歐盟提供物聯網/雲端產品或服務之企業,國內企業亦會因網路跨境性質而受影響,可參考資策會科法所所發布之重要數位資料治理暨管理制度規範(EDGS)預做準備。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
台美貿易談判 藥廠權益是焦點據報載, 5 月 25 日 起在我國舉行兩天之台灣與美國貿易投資架構協定( TIFA )會談,藥廠權益乃雙方談判焦點,美方這次來台所提出之談判項目中,對台灣藥廠衝擊較大的是資料專屬權( Data Exclusivity ),及專利連結( Pattern Linkage )兩項,本土製藥業擔心,政府若妥協將可能造成台灣藥廠及研究單位新台幣上百億元的損失。 儘管去年初立法院已經三讀通過藥事法 40 條之 2 的「資料專屬權保護」條文,但預料美方這次將要求政府重新修法,以保障外商藥廠的權益。此外,專利連結( patent linkage )也是衛生署嚴陣以待的項目,外商訴求此一機制之目的,係希望透過專利資訊之揭露,使任何申請上市許可之學名藥品,均係在專利到期後或未侵害專利之前提下,使得上市。 專利連結制度首見於美國,美國食品藥物管理局 (FDA) 對藥品有所謂之「橘皮書」,要求公布各藥品的專利內容及安全性與療效資訊,並以此作為日後學名藥賞上市或與原開發藥廠發生專利侵權爭訟時之參考。業界認為,如果台灣也比照美國 FDA 專利連結的規定,可能導致外商藥廠得以輕易對台灣藥廠展開侵權訴訟官司,衝擊我國製藥產業。
老歌翻唱!手握著作權轉讓證明書便可放心?-簡評智慧財產法院 101 年度民著上字第 9 號判決 世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。