專利連結

  專利連結(patent linkage,亦有稱patent registration linkage)是1984年美國《藥品價格競爭及專利期回復法(Hatch-Waxman Act, HWA)》所創設。傳統上,醫藥主管機關與專利主管機關的權責是有所區分的。然而,醫藥主管機關因為醫藥管理制度與專利制度的連結,使得醫藥主管機關須審查專利相關事務,即醫藥主管機關在審查學名藥上市許可申請時,必須同時判斷該藥品是否侵害專利藥公司就該藥品所掌握的專利。

  專利連結制度可以採取幾種形式,最簡單形式的專利連結可能涉及了以下的要求:當有學名藥廠對專利藥公司所生產的的專利藥品提出學名藥,並尋求醫藥主管機關批准時,則應向專利藥公司告知學名藥廠的身份。強度較強的專利連結,在該專利藥品的專利到期或者無效之前,可以禁止醫藥主管機關核發上市許可給學名藥品。而更強的專利連結不僅可以禁止核發上市許可,也可以禁止在專利期間內對學名藥品的審查。

  我國目前並未採納專利連結制度,但在我國目前擬積極參與的《泛太平洋夥伴協議(TPP)》中則要求成員應採納專利連結制度,故未來我國動向將值得關注。

本文為「經濟部產業技術司科技專案成果」

※ 專利連結, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7304&no=55&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

啟動印度專利市場:印度推出國家智財政策草案

  2014年12月19日,印度官方智財政策智庫公佈草擬的國家智財政策,該智庫成員囊括法官、律師等智財領域專家。草案的主要口號,為打造「創新印度」!   為達成利用智慧財產權,推動國內先進技術發展之目標,配合「國內自產自銷」、「推動數位內容軟實力」等相關政策,草案提出8大智財政策改革面向,包含:「智財意識推廣」、「智財創造」、「新智財法令與法制架構」、「智財管理運用」、「國內創新商業化」、「智財執法」、以及「智財人力培育」等。其中值得注意的,為根據印度專利局資料顯示,印度專利申請案統計中有75%的申請來源為國外,印度智財政策智庫認為,這對國內創新與科技產業、學研機構來說是個警訊,應強化國內研發人員對於商業化與智慧財產權的相關知識;並且,對於促進智財權創造以及技術商業化,草案亦提出研發補助、租稅減免方案,期能增進國內智財創新動能;最後,因應增加國內專利申請數量與品質之目標,提昇國內專利審查能耐,即為必要配合之政策。   我國2013年推出智財戰略綱領至今,已進入第3年,面對國際上瞬息萬變的市場與法制環境,新興市場如印度最新作出之智財政策,對我國政府具有一定參考價值。

新加坡通過2010年版電子交易法施行細則

  繼新加坡2010年版本電子交易法(Electronic Transactions Act, ETA)於2010年7月1日式施行後,該國資通訊發展局(Info-communications Development Authority, IDA)因應修正電子交易法施行細則,該細則並於2010年11月1日起正式實施。其目的在使憑證機構管理制度得以配合新興資訊安全技術齊驅發展,進而使其與國際趨勢相符,修正要點如下:   1. 修正許可制為志願許可制:此次修正最大變革即在使該國憑證機構管理制度由原本的許可制,改為志願許可制。前者係使所有憑證機構均應向主管機關申請許可後,始能對外簽發憑證;而志願許可制則是原則上憑證機構對外簽發憑證無需主管機關許可,但憑證機構如果希望所簽發之憑證具備特定法律效果,則仍須經過許可。   2. 證據法上的推定效果:經過自願申請許可通過的憑證機構,經其所簽發之憑證而製作的數位簽章將有證據法上推定為真之效力,無待憑證用戶舉證即有其真實性,惟該真實性仍可由他方另舉反證推翻。換句話說,若數位簽章製作人使用的憑證為一般未經申請許可之憑證機構所簽發者,憑證用戶需先向法院提出其他輔助證據證明該簽章真實性。   3. 許可申請之要求:憑證機構自願申請許可時,應繳交申請費1千元新加坡幣(下同)及2年有效之許可執照費1千元。此外,新版施行細則統一整合舊有之「安全指導手冊」(Security Guideline)及其他各項稽核規定於「稽核需求要項表」(Compliance Audit Checklist),以供憑證機構得以更便利之方式了解並遵循共通之稽核程序。

技術進步、資訊流通、隱私保障

TOP