荷蘭公私協力機制PPP

  自2012年來,荷蘭政府鼓勵荷蘭科學研究機構(Netherlands Organization for Scientific Research, NWO) 隸屬教育文化科學部(Ministry of Education, Culture and Science, OCW)積極推動與9大重要領域(Top Sectors)與企業相關研究的合作,NWO同時是政策實施機構也是創新研發機構。OCW每年資助約275億歐元在重要領域,其中有超過100億歐元在協助公私協力機制 ( Public-Private Partnerships, PPP)。近年來,OCW增加編列給NWO的預算,2014年增加2千5百萬歐元;2015-2017年增加7千5百萬歐元;2018年預計增加1億歐元。PPP 參與者為研究機構(例如大學機構、公私立研究機構)及民間企業(國內國外企業皆可)。主要規範依據NWO-Framework for Public-Private Partnership,合作後以聯盟(consortium)形式運作,聯盟成員間可以契約個別約定合作內容,但相關權利義務仍須遵循NWO-Framework for Public-Private Partnership。關於既有智慧財產權之使用方式,聯盟成員間須另外約定非無償使用。為實現該聯盟之研發目的, NWO為主要出資者時,可成為該研發成果之所有人或共有人,待研發成果運用及收益可以獲得妥善安排時,得將研發成果轉讓予能將研發成果運用效益最大化之人。原則上,參與PPP的企業並不當然有優先權可將該研究成果運用於商業用途,除非參與企業出資額幾乎達到整個研發支出的百分之百,且已簽訂研發成果書面授權或轉讓契約後,始能將該研發成果運用於商業用途。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 荷蘭公私協力機制PPP, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7308&no=55&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國EPA以強制法制推動大型工業設施導入符合綠色環保、效率節能等新興技術措施

  為落實推動可謂污染源主要大宗之大型工業設施,積極改善並導入符合綠色環保、效率節能等新興技術或措施,美國環保署(Environmental Protection Agency,EPA)於2010年12月完成「溫室氣體排放量許可方案(Framework for Greenhouse Gas Permitting Programs)」以確保未來國內新設置大型工業設施,其溫室氣體排放量能取得認定,並符合聯邦「清潔空氣法案(Clean Air Act)」許可規範。環保署並將推動各項行動,協助州地方政府調整法令及措施,屆時符合聯邦法規相關要求標準。   依據此方案,自2011年1月起美國境內大型工業設施若有興建或進行重大修改計畫,必須使用能源效率措施、符合效率成本科技來興建,確保能減少溫室氣體排放,並取得符合許可證明,以此模式控制達成美國溫室氣體減量目標。   並且,環保署並同時公佈制訂「特定產業新污染源排放標準(New Source Performance Standards,NSPS)」,而特定產業將包括石化燃料發電廠與煉油廠,兩項目前可謂最大工業污染源;並且所管制的空氣污染源,擴及包括溫室氣體、毒性化學物質,以及六種於「清潔空氣法案(Clean Air Act)」明定指標污染物(Criteria Pollutant)的重大常見空氣污染物。這些NSPS將設立特定產業新工業設施污染物之排放標準限制,並規範控制既有工業設施之空氣污染。美國環保署表示,未來將定期更新這些標準限制,以因應相關科學技術革新。   環保署官員認為,這些推動措施將引領美國企業永續升級,開發更多綠色能源技術,吸引更多投資,並增加整體產業競爭力。然而,環保署這些措施,卻引起美國石油協會(American Petroleum Institute)代表的反彈,並認為環保署這項強制措施是史無前例,亦不符合「清潔空氣法案(Clean Air Act)」立法意旨及規範用意。環保署近來積極推動「溫室氣體排放量許可方案」,以及制訂「特定產業新污染源排放標準」,未來成效如何,及是否得以落實實施,有待後續觀察。

澳洲法院正審理乳癌或卵巢癌基因檢測產品可專利性訴訟

  BRCA1與BRCA2乃兩個已經被確認的基因,係用來檢測婦女是否容易罹患乳癌或卵巢癌的重要基因。在澳洲這個檢測產品是由基因技術有限公司(Genetic Technologies Limited, 以下簡稱GTL)所擁有。因檢測費用高達3,700元美金且無法有其他的檢測選擇,形成獨占。   今(2010)年3月,美國紐約聯邦地方法院(United States District Court Southern District of New York)認為BRCA1與BRCA2等人類基因乃如同血液、空氣或水的結構,屬於自然的產物,不具有可專利性,系爭專利阻礙了乳癌與卵巢癌相關研究與創新,並限制檢測的選擇性,因而作出BRCA1與BRCA2基因不具可專利性之判決。   受到美國判決之影響,今(2010)年6月澳洲的癌症之聲消費者團體(Cancer Voices),及一名患有乳癌的婦女同向雪梨聯邦法院(Australian Federal Court in Sydney)提起訴訟,希望免除GTL對於檢測乳癌與卵巢癌產品的獨占權利。主要理由包括,對人類的一部分(基因)給予專利,不但阻礙了後續研究,也會阻礙乳癌與卵巢癌治療方法的研發,更提高許多病患接受此檢測的障礙。固然專利權人得維持高檢測費用,但有別於傳統工程或技術上的專利,生物技術專利也含有高度追求人類健康之公共利益,因此握有生物技術專利者,實不應利用獨占地位阻礙的人類健康的維持與追求,阻礙醫療或治療方式的研究。   過去澳洲專利局認為自自然產物分離的基因或物質是具有可專利性的,此案若勝訴,澳洲專利局將調整原先承認自自然產物分離的基因或物質,具可專利性之見解,所以該案的後續發展值得我們關注。

Google與著名品牌的商標戰爭勝出希望濃厚

  網路搜尋引擎龍頭Google靠其所提供的關鍵字搜尋服務在廣告市場上已獲取一定之利潤,惟此種服務並沒有獲得全球各地品牌持有人的認同,因此而向Google提起訴訟者,亦所在多有;然而,針對關鍵字廣告的訴訟,Google在歐盟法院的判決中很有機會取得初步的勝利。   所謂關鍵字廣告,係指廣告主使用此項服務時,得以自行命名「引發曝光」的關鍵字(Keyword Triggers),該關鍵字可設定為品牌之名稱,亦即當一般民眾使用搜尋功能,輸入特定品牌名稱作為關鍵字時,搜尋結果就會出現當初命名該關鍵字的廣告主網站訊息,只是同樣的關鍵字也有可能為競爭對手甚或商品仿冒者所使用;換言之,民眾輸入特定品牌名稱並點擊「搜尋」之後,搜尋結果將有可能同時出現品牌持有人、競爭對手,或是仿冒者三種不同角色。從而包含Louis Vuitton在內的歐洲知名精品商,相繼以此理由向Google提起訴訟,強調該項服務使廣告主不需經商標權人允許即可使用其商標,Google係已侵害其商標權。   對此,歐盟法院顧問卻認為,廣告主選擇特定關鍵字之後並非直接產生商品販售或是服務提供的行為,亦即使用關鍵字搜尋本身並不會造成商標的侵害或淡化,真正使其權利受損者,乃係廣告主所提供令人混淆的廣告內容。故Google所提供的關鍵字廣告服務,雖未對品牌名稱設下限制,惟「自由選取品牌名稱為關鍵字」一事,並不會侵害品牌持有人之商標權;但需注意者是,經由關鍵字產生的廣告內容中,如果品牌持有人得以舉證該內容已侵害其商標時,Google仍可能負有侵害責任。   歐盟法院顧問之見解雖然並非具有實質的拘束力,但約莫八成的案件顯示,歐盟法院多數將會採納顧問的意見。上述案件將有可能在11月份做出正式判決,令人拭目以待。

TOP