美國食品藥物管理局(The Food and Drug Administration,簡稱FDA)於2014年7月更新並公布了醫療器材上市前許可(premarket notification)的指引(guidance)(該指引名稱為510(k) Program: Evaluating Substantial Equivalence in Premarket Notification Guidance for Industry and Food and Drug Administration Staff,以下簡稱510(k)指引),針對醫療器材業者將其生產製造的醫療儀器申請上市的過程做了新的調整及規範。此指引主要是讓業界及FDA人員了解FDA在評估醫療器材申請過程中所評估的因素及要點,並藉由FDA在審查醫療器材的實務規範及審查標準來當作標準並訂定510(k)修正,以提高510(k)評估的可預測性、一致性及透明度,讓業界有一定的遵循標準。雖然FDA的指令文件並不受法律強制規範,但可供醫材業者更清楚FDA所重視的審查程序及內容。
歐盟對醫療器材上市前之審查亦有相關指令,分別為一般醫療器材指令(Medical Device Directive,簡稱MDD)、活體植入醫材指令(Active Implantable Medical Devices Directive,簡稱AIMDD)及。歐盟規定醫療器材在上市前,必須符合上市前所規定之內容以正當在歐盟、歐洲經濟地區(European Economic Area)及瑞士市場販售使用。然而特別的是,不同於美國上市前的醫療器材由主管機關FDA進行審查,歐洲藥物管理局(The European Medicines Agency of the EU)並不參與醫療器材的審核程序,而是交由歐盟會員國的私人認證機構對醫療器材做評估。
本文為「經濟部產業技術司科技專案成果」
根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。 近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。 傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。 此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。 其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」
論政府資料探勘應用之個人資料保護爭議 南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。
英國氣候過渡計畫小組公布氣候揭露報告框架的最終版本英國氣候過渡計畫工作小組(Transition Plan Taskforce,以下稱TPT)於2023年10月9日公布其氣候揭露報告框架(TPT Disclosure Framework,下稱「框架」)最終版本及使用指引。TPT是英國財政部在2022年4月成立,負責建立氣候過渡計畫準則。TPT則於2022年11月提出框架草案,並開始徵詢產官學界意見,最後提出正式版本。 TPT框架建議企業以宏觀、有策略的方式制定氣候過渡計畫。TPT框架從企圖心、行動力和當責性三項原則出發,分別就五個必須揭露的事項說明如何在氣候揭露報告中呈現企業的氣候過渡計畫: 一、企圖心:說明企業的基礎事項,例如氣候戰略目標和商業模式。 二、行動力:說明過渡計畫的執行策略、以及擴大參與的策略。 三、當責性:說明將採用哪些指標與標的來監督計畫的執行、以及如何將過渡計畫融入企業的治理當中。 TPT也配合框架內容制定行業指引,目前已公布40個行業摘要(Sector Summary),簡述各行業可用的脫碳手段、指標與目標。未來還將公布針對銀行業、資產擁有者、資產管理者、電力公用事業和電力發電機、食品與飲料、金屬與礦業、石油和天然氣等7個行業的深度剖析(Sector Deep Dives)。 此外,TPT網站上也提供TPT框架與相關國際主流框架或準則之比較報告給各界參考,要使這套由英國自行開發、為英國內部量身打造的框架也能接軌國際,其未來實施成效值得繼續追踪觀察。