日本政府認為IoT、Big Data以及人工智慧等破壞式創新技術的出現,目前世界正處於「第四次工業革命」之重大變革,而究竟IoT、Big Data及人工智慧的發展會對經濟、社會產生什麼程度的影響,公私部門有必要共同對應及討論共同戰略願景。因此,經濟產業省於2015年9月17日在「產業構造審議會」下設置「新產業構造部會」,以公私協力的方式共同策定未來產業願景。
該會議的具體檢討事項包括:
1. 具體變革狀況檢視:IoT、Big Data、人工智慧等技術,究竟會對產業構造、就業結構,以及經濟社會系統具體產生如何的改變。
2. 變革之影響:上述的變化可能創造機會,亦會產生風險。因此,於經濟社會層面要怎麼解決迎面而來的挑戰,是否有可能克服相關限制,亦為應關注的焦點。
3. 把握國際上的動向:上述的機會及風險,各國政府及企業等應對的戰略究竟為何。
4. 日本政府具體之特定處方籤:於上述背景下,日本政府及民間企業,應提出個別之戰略及對應方法。
綜上所述,公私部門應協力做成包含時間進程的「指南針」,最後提出2030年「新產業構造願景(新産業構造ビジョン)」,對將來經濟社會系統進行預測。
本文為「經濟部產業技術司科技專案成果」
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
日本「u-Japan政策」簡介 美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國消費者金融保護局發布最終規則強化消費者金融資料控制權與隱私保護 資訊工業策進會科技法律研究所 2024年12月10日 美國消費者金融保護局(Consumer Financial Protection Bureau, CFPB)於2024年10月22日發布最終規則以落實2010年《消費者金融保護法》(Consumer Financial Protection Act, CFPA)第1033條規定之個人金融資料權利[1],該規則即通常所稱之「開放銀行」(Open Banking)規則。 壹、事件摘要 本次CFPB頒布最終規則旨在賦予消費者對其個人金融資料更大的權利、隱私與安全性。透過開放消費者金融資料,消費者得更自由地更換金融服務提供者以尋求最佳交易,從而促進市場競爭,並激勵金融機構精進其產品與服務[2]。 貳、重點說明 最終規則要求資料提供者在消費者及授權第三方之請求下,提供消費者金融產品或服務相關資料,並應以消費者及授權第三方可使用之電子形式提供。最終規則亦制定標準,以促進資料標準化格式(standardized formats)之發展和使用,同時規範第三方近用消費者資料義務,包括對資料之蒐集、利用及保留限制。相關重點如下: 一、受規範機構主體 最終規則規範對象為資料提供者(data provider),包含銀行、信用合作社等存款機構(depository institution);發行信用卡、持有交易帳戶、發行用於近用帳戶設備或提供支付促進服務(payment facilitation service)等非存款機構[3]。值得注意者,最終規則將數位錢包(digital wallet)及支付應用程式(payment app)業者納入資料提供者範圍,亦即被廣泛使用的金融科技服務亦將受到開放銀行規範體系之約束。此外,資料提供者不得向消費者或第三方收取資料近用之費用。 二、受規範資料範圍 最終規則規範之資料範圍涵蓋:資料提供者控制或擁有之24個月內之歷史交易資訊、帳戶餘額、付款資訊、契約條款與條件、即將到期之帳單、以及基本帳戶驗證資訊(Basic account verification information)等[4],消費者得授權第三方近用此類資料。至於機密商業資訊、蒐集資料僅用於防止詐欺、洗錢,或為偵測或報告其他非法及潛在非法行為,又或基於其他法律要求保密之資訊,以及在正常業務過程中無法檢索之資料,則豁免最終規則之適用[5]。 三、消費者與開發者介面 根據最終規則,資料提供者須建立及維護兩個獨立的介面以利資料之近用,包含:消費者介面,例如提供消費者近用其資料之入口網站,以及授權第三方之開發者介面(developer interface),例如應用程式介面(Application Programming Interface, API),雖最終規則不要求使用任何特定技術,然仍要求資料提供者須以標準化機器可讀格式(Standardized and Machine-Readable Format)提供資料,介面功能要求須達每月最低99.5%之回應率(response rate)[6]。此類資訊須在每月最末日前揭露於資料提供者網站上。此外,介面之設計須遵守《美國金融服務業現代化法》(The Gramm-Leach-Bliley Act, GLBA)」及聯邦貿易委員會(Federal Trade Commission, FTC)之《消費者資訊保障標準》(Standards for Safeguarding Customer Information)等消費者資料保護法規義務[7]。 四、授權第三方之行為義務 授權第三方(authorized third party)為代表消費者向資料提供者請求近用資料,藉以提供消費者產品或服務者。為解決隱私與資料安全問題,該規則對尋求近用消費者資料之第三方提出數項要求[8],包含但不限於: (一)知情同意之取得 第三方須取得消費者明確知情同意(express informed consent),以便代表消費者近用資料。 (二)資料利用之限制 第三方須確保將其資料之蒐集、利用及保留限制在提供消費者所請求的產品或服務之合理必要範圍內。就此部分,精準廣告(targeted advertising)、交叉銷售(Cross-selling),以及銷售資料並非提供產品或服務之合理必要範圍。 (三)遵守聯邦法規 第三方須依GLBA第501條規定或FTC之《消費者資訊保障標準》確保在其系統中採用「資訊安全計畫」(information security program)。 (四)政策與程序文件要求 第三方應擁有合理書面政策和程序,以確保從資料提供者處準確接收資料,並提供於其他第三方,即資料正確性之確保。 (五)資料撤回權之確保 第三方應向消費者提供撤回第三方授權之方法,撤回過程須簡易明瞭。在第三方收到消費者撤回授權之請求時,應通知資料提供者以及已向其提供消費者資料之其他第三方。 (六)第三方監督義務 第三方應透過契約要求其他第三方在向其提供消費者資料前遵守特定第三方法定義務。 (七)資料保存期限 消費者資料之保存期限最長為一年。若繼續蒐集,第三方應取得消費者重新授權。若消費者不提供重新授權或撤回授權,第三方應停止資料之蒐集,並停止利用與保留先前蒐集之資料。 五、實施日期 最終規則將依機構資產規模分階段實施[9],最大規模之機構(資產總額為2500億美元以上之存款機構資料提供者,以及在2023年或2024年任一年中,總收入達到100億美元以上之非存款機構資料提供者)須在2026年4月1日前遵守最終規則。對於規模最小之機構(資產總額低於15億美元但高於8.5億美元之存款機構資料提供者)須於2030年4月1日前遵守該規則。另總資產低於8.5億美元之存款機構不受該規則限制,以減輕小型銀行及信用合作社合規負擔。 參、事件評析 CFPB之CFPA第1033條最終規則將重塑美國金融市場之監理格局,由市場驅動之開放銀行框架走向由政府透過法規實質監理之管制措施,要求業者開放消費者資料。值得留意者,歐盟執委會(European Commission)2023年6月推出之「金融資料近用」(Financial Data Access, FiDA)草案[10]亦基於消費者賦權理念,強化消費者對其資料權利之控制權。由此可觀察國際間金融資料利用與監理規範逐漸走向以消費者資料自主為中心之法制架構,當代金融資料監理趨勢或值得我國主管機關及業者留意關注,除可作為我國金融資料法制與政策制定之參考,亦供我國企業布局全球化金融服務提前作好準備。 [1]Required Rulemaking on Personal Financial Data Rights, 89 Fed. Reg. 90838. [2]Consumer Financial Protection Bureau, CFPB Finalizes Personal Financial Data Rights Rule to Boost Competition, Protect Privacy, and Give Families More Choice in Financial Services, available at https://www.consumerfinance.gov/about-us/newsroom/cfpb-finalizes-personal-financial-data-rights-rule-to-boost-competition-protect-privacy-and-give-families-more-choice-in-financial-services/(last visited Dec. 5, 2024). [3]12 C.F.R. § 1033.111. [4]12 C.F.R. § 1033.211. [5]12 C.F.R. § 1033.221. [6]12 C.F.R. § 1033.311. [7]See id. [8]12 C.F.R. § 1033.421. [9]12 C.F.R. § 1033.121. [10]Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on a framework for Financial Data Access and amending Regulations (EU) No 1093/2010, (EU) No 1094/2010, (EU) No 1095/2010 and (EU) 2022/2554.
美國食品藥物管理局修訂《臨床研究電子系統、電子紀錄及電子簽章:問答集》指引草案美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)於2023年3月15日修訂《臨床研究電子系統、電子紀錄及電子簽章:問答集》(Electronic Systems, Electronic Records, and Electronic Signatures in Clinical Investigations: Questions and Answers)指引草案,為試驗委託者、臨床研究人員、人體研究倫理審查委員會、受託研究機構及其他利害關係人統整電子系統、電子紀錄及電子簽章常見問答,供食品、醫療產品、菸草製品及動物新藥臨床研究參考。 本指引草案修訂2017年6月21日所發布的《21 CFR part 11臨床研究使用電子紀錄及電子簽章—問答集》(Use of Electronic Records and Electronic Signatures in Clinical Investigations Under 21 Part 11-Questions and Answers),並將於本指引最終版確定後,取代2007年5月10日所發布的《臨床研究使用電腦系統》指引(Computerized Systems Used in Clinical Investigations)。US FDA認為電子系統、電子紀錄及電子簽章是可信且可靠的,並且通常可等同於紙本紀錄及手寫簽名的方式。 本指引修正重點如下: 一、新增電子系統驗證的風險基礎方法,以確保臨床研究建立、修改、維護、歸檔、檢索、傳輸電子資料及紀錄的真實性、完整性及機密性。 二、統整試驗委託者與資訊科技服務供應商合作應注意事項,以確保電子紀錄符合監管要求。 三、新增數位健康科技(digital health technology, DHT)定義及使用DHT考量重點。 關於臨床研究使用DHT,亦可參考2021年12月23日所公布的《透過數位健康科技擷取臨床研究遠端資料》(Digital Health Technologies for Remote Data Acquisition in Clinical Investigations)指引草案。該指引草案針對DHT的選擇、驗證、應用、訓練及風險提供相關建議。於臨床研究使用電子系統、電子紀錄及電子簽章已為國際趨勢,對於各國相關規範值得持續關注。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)