「數位藥丸(digital pill)」顧名思義就是將藥物與數位科技結合,藥丸上載有感測器(sensor),在進入人體後傳輸訊號至病人身上的訊號接收器貼片,相關資訊再被傳送給醫療人員。由於許多研究顯示約有半數病人並不會完全遵照醫師指示服藥,使治療效果不彰,並造成醫療資源之浪費。而電子藥丸有助需長期頻繁用藥的族群定時服藥與協助醫療機構追蹤病人服藥狀況,並在臨床試驗中持續觀察病患用藥後的生理反應。
日前美國食品藥物管理署(Food and Drug Association)已接受Proteus Digital Health公司之上市審核申請,不久之後人們將有望享受到此數位藥丸帶來的便利。不過其亦存有一些疑慮以及待克服的技術問題,例如:個人資料之保護措施、控制藥物釋放之系統故障或遭惡意攻擊時之應變等等問題。同時,雖然許多人都認為數位藥丸對病人之疾病控制有利,但是病人之拒絕治療權卻可能因而犧牲,雖然醫生不能強迫病人服藥,但法院強制處分常會牽涉特定的治療程序,此時若病人拒絕服藥,其假釋可能被撤銷,該技術將可能成為一個監視的手段。
本文為「經濟部產業技術司科技專案成果」
日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。 工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。 工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。
產業創新條例因應放寬公司研發抵減、加強留才制度之修正草案 國內版RoHS 將比照歐盟規定歐盟有毒物質禁用指令( RoHS )已自今年 7 月起上路,國際間陸續有其他國家跟進:目前為止,美國約有半數的州已通過相關法令,加州從明年起亦將開始實施;至於亞洲的日本已與歐盟同步實施、韓國將於明年 7 月上路;澳洲草案也已經出爐,至於實施日期則未定。 為與國際接軌,環保署也正積極推動國內版 RoHS ,目前法案名稱尚未確定,不過內容將會與國際接軌,除限制電子電機等產品,不得含有鉛、汞、鎘、六價鉻、聚溴聯苯和聚溴二苯醚等六種有毒化學物質或限制其比率外,檢驗標準亦將比照歐盟,採用事後市場管理機制,亦即先放行產品進口,並採事後抽測方式檢驗,因為採事前市場管理,將造成貿易障礙,實施檢驗亦有困難。至於罰責方面則仍須商榷,環保署表示目前我國要先合併「廢棄物清理法」與「資源回收再利用法」的法源,預定在年底前召開公聽會並送行政院審查,最快也要等明年立法院第一會期通過後才會實施。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。