美國白宮(the White House)於2019年5月2日發布第13870號總統令(Executive Order),旨在說明美國的資安人力政策規劃。 於聯邦層級的資安人力提升(Strengthening the Federal Cybersecurity Workforce)上,由國土安全部(Department of Homeland Security, DHS)部長、管理預算局(Office of Management and Budget, OMB)局長及人事管理局(Office of Personnel Management, OPM)局長共同推動網路安全專職人員輪調工作計畫(cybersecurity rotational assignment program),計畫目標包含:輪調國土安全部與其他機關IT及資安人員、提供培訓課程提升計畫參與者之技能、建立同儕師徒制(peer mentoring)加強人力整合,以及將NIST於2017年提出之國家網路安全教育倡議(National Initiative for Cybersecurity Education, NICE)和網路安全人力框架(Cybersecurity Workforce Framework, NICE Framework,以下合稱NICE框架),作為參與者的最低資安技能要求。同時上述部長及局長,須向總統提交報告說明達成上述目標之執行方案。 於國家層級的資安人力提升(Strengthening the Nation’s Cybersecurity Workforce)上,則表示商務部部長(Secretary of Commerce)、勞工部部長(Secretary of Labor)、教育部部長(Secretary of Education)、國土安全部部長與其他相關機關首長,應鼓勵州、領土、地方、部落、學術界、非營利與私部門實體於合法之情況下,自願於教育、訓練和人力發展中納入NICE框架。此外,將每年頒發總統網路安全教育獎(Presidential Cybersecurity Education Award),給予致力於傳授資安知識之中小學教育工作者。 綜上所述,美國將透過制度、教育與獎勵等方式培育資安人才,提升國內資安人才的質與量,以因應越來越險峻的資安威脅與風險。
英國電信廣播主管機關發布未來三年之數位廣播(digital audio broadcasting)服務推動聲明日前英國電信廣播主管機關 Ofcom(Office of Communication) 就未來三年之數位廣播服務推動發表聲明,其主要內容為: • 全國性數位廣播服務執照 Ofcom 預計於 2006 年底開始第二張全國性的數位廣播服務執照之發放工作,預計於 2007 年挪出頻段以供該全國性數位廣播服務之用,於 2008 年時民眾將可收聽該全國性數位廣播服務,其服務範圍將含蓋全英國地區,但為避免對他國頻段之運作造成干擾,部分沿海地區將無法接收到該服務。 • 地方性數位廣播服務執照 Ofcom 預計於 2006 年下旬開始 12 張地方性數位廣播服務執照之發放工作;其次,於 North Wales, Suffolk 以及 Northern Ireland ,目前並無額外的頻段可作為地方性數位廣播服務之用,但 Ofcom 仍會尋求釋出其他頻段,以供地方性數位廣播服務之用的可能性。
德國提出「對外貿易條例」修正草案德國聯邦經濟與能源部(Bundesministerium für Wirtschaft und Energie,BMWi)在2017年7月提出「對外貿易條例」(Außenwirtschaftsverordnung)修正草案,以規定基於德國的公共政策安全或基本安全利益,對於外國人(或企業)收購國內公司,在必要時得予以禁止或增加強制條件。 如果交易完成後(一)歐盟之外的收購方將直接或間接持有目標公司25%以上的表決權以及(二)出於公共秩序或安全原因有必要採取上述措施,聯邦經濟與能源部可禁止對德國公司的收購交易。 該法修正草案亦進一步規定,聯邦經濟能源部將在本法律框架下對於涉及以下(技術)領域相關企業併購案之合約談判的各方進行審查程序,以確保國家實質安全利益: 部分能源電力領域,例如:電廠控制技術、電網工程技術、電廠系統或系統操作的控制技術(供電、供氣、燃油或集中供熱等)。 部分用水領域,例如:用水控制、調配或自動化技術(飲用水供應或污水處理設施)。 訊息技術和電信軟體領域,例如:語音和數據傳輸、數據儲存系統及處理系統)。 金融和保險部門、其運營的軟體或現金系統。 涉及醫療保健軟體部門或醫院管理訊息系統、處方藥和實驗室訊息系統的運行等領域部分。 涉及運輸和交通領域內的控制系統、工廠或設施的運行、航空運輸、乘客和貨物系統、鐵路運輸、海運和內河運輸、公路運輸、公共交通或後勤物流等領域。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。