新加坡個人資料保護委員會(PDPC)為讓企業能妥適的遵循2012年發布的個人資料保護法(Personal Data Protection Act/PDPA),於2013年9月發布個人資料保護法(PDPA)的執行指引文件:「PDPA關鍵概念指導方針(Advisory Guidelines on Key Concepts in the PDPA)」,針對各項如何蒐集、處理及利用個人資料的要求與義務,提供細節性說明及應用範例。執行指引文件的發布,是源自於公眾在實際操作法遵要求時,所發生的執行困難、疑義和衍生的建議和意見,彙整後進行法規釋疑和舉例。此份文件的要求係立基於實用主義及「企業友善(business-friendly)」的理念,幫助機構調整業務運作流程以及妥善的遵守法律的規定。 執行指引文件提供關鍵名詞的詮釋,例如「個人資料」在PDPA裡的定義為:任何可以識別個人、不拘形式及真實性的資訊;針對「謝絕來電條款(Do not call)」的遵循方式亦有細緻化的說明;就各項不同的具體子議題,清楚的提供常識性的措施(Common-Sense Approach)供機構採用,讓法規要求合乎常理,使個人資料保護與企業因需求而對個人資料進行蒐集、利用和揭露之行為間取得衡平。 新加坡個人資料保護法(PDPA)兩大立法目的:強化個人對自己個人資料的資訊控制權;使新加坡因提供充分的安全維護機制而受企業信任,強化新加坡的經濟競爭力與地位。另外,相較於其他國家在國際傳輸上有較嚴格的限制(必須有相同等級的個人資料保護立法為傳輸前提),新加坡的法制理念是僅讓企業遵守最低限度的安全維護要求後,便能將個人資料進行國際傳輸,這樣較彈性的法制設計讓新加坡有望成為亞太地區的資料與研究中心樞紐。
BSI公布個人資料管理系統標準之草案英國國家標準組織(British Standard Institution)於2009年1月8日公布個人資料保護管理系統標準(標準標號為DPC BS 10012)之草案,使組織在個人資料儲存管理工作上符合個人資料保護法(Data Protection Act 1998,DPA)之要求。 有鑑於利用個人資料管理系統(personal information management system,PIMS)管理業務上取得之資料之情形日益增多,而觀諸該資料之性質,通常多為DPA所規範定義的「個人資料」。因此,為使個人資料管理有其標準規範,並得以運用在任何規模之公私部門,使組織內之個人資料管理系統符合DPA之規範且具有一定程度之安全性,BSI試圖提出有關個人資料管理一致性之標準規範,以供組織在個人資料處理程序工作上之遵循。該標準規範如同BS EN ISO 9001:2000之品質管理系統(Quality Management System)及BS ISO/EC 27001:2005之資訊安全管理系統標準,以PDCA週期(Plan-Do-Check-Act)進行規劃,並透過執行所規範之流程落實個人資料之保護。 目前該草案已經公布,BSI於2009年3月31日前將接受各界對於該草案之諮詢及舉辦公聽會,以求標準規範之完善。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國參議員提案修改股票選擇權(stock option)租稅處理優惠美國參議員Carl Levin最近提出一項名為「終止公司股票選擇權租稅優惠法」(Ending Corporate Tax Favors for Stock Options Act, S. 2116,以下簡稱:股票選擇權租稅優惠終止法)的草案,主要目的是希望改變公司對於股票選擇權費用化的租稅處理(tax treatment of corporate stock option deductions)。 就租稅意義而言,公司發給員工(包括高階經理人及一般員工)的股票選擇權為薪資的一種,而根據美國內地稅法規定,目前公司在申報股票選擇權的薪資支出(compensation expense)減項時,可以申報的費用比公司帳簿上所登載的更高。由於此一稅法上獨厚股票選擇權的處理,使得近年來許多美國企業支付給主要高階經理人的薪資,有一大部分是股票選擇權,此現象在科技產業亦甚為顯著,其結果造成公司高階經理人與一般員工的薪資差距越益擴大。 「股票選擇權租稅優惠終止法」要求公司於薪資支出項下申報的股票選擇權費用,必須與公司帳簿所記載的數目一致,同時,股票選擇權也應與其他類別的公司薪資費用一樣,同樣受到1百萬美元的費用上限之申報限制,至於股票選擇權申報費用的時點,則不須要等到選擇權行使(exercise)的年度。