歐盟於2016年4月19日公布數位單一市場下ICT標準化優先發展項目(ICT Standardisation Priorities for the Digital Single Market),包括:5G通訊、雲端運算、智慧聯網、巨量資料技術、以及網路安全等,作為目前數位單一市場發展的基礎。相關影響產業包含:智慧健康、智慧能源、智慧運輸系統、電動車、智慧家居、以及智慧城市等。其三大主軸依次說明如下:
1. ICT標準建立為數位單一市場發展核心
歐盟將依1025/2012規則為基礎,進行標準化建立,因此將聚焦在數位單一市場需要發展的核心技術領域,優先進行標準訂定。
2. 因應全球技術變遷發展
ICT標準發展主要仍以產業為導向,且由產業自願性採納,建立之原則包括應具備透明性、開放、公平與一致性、有效與連結性等,此同時也能促成歐洲創新能量之發展。
3.以雙主軸計畫優先發展ICT標準設立
(1)首先歐盟執委會將確認數位單一市場優先發展之五項領域,並且設立發展時程。
(2)針對上述的優先發展領域,歐盟將進行施行檢視以及相關細項。
在5G通訊部分,預計將透過5G公私協力合作發展,同時以目前產業的需求為發展導向;在雲端運算方面,歐盟將以資金補助方式,促進雲端應用的互通性與易取性發展,並且支持企業,尤其在中小企業部分,以服務層級協議為基礎,協助採用雲端運算服務;在智慧聯網發展部分,主要為發展技術、介面、Open API等,建立準則,並預計將智慧聯網標準納入成為政府採購項目之一;在網路安全性部分,在上述發展技術領域當中,資料安全與隱私保護為核心議題,因此除了透過公司協力方式發展安全技術以外,同時也鼓勵業者應該設計著手保護隱私等概念優先納入技術之中;關於巨量資料技術部分,包括跨部門技術整合、資料與後設資料有更佳的互通性。此外,尚包括資料與軟體基礎設施服務,提供科學資料的交換、執行資料管理計畫、品質驗證、信賴性與透明性等原則。
最後,在可能受影響之產業方面,以智慧健康發展為例,智慧健康必須符合病人預期要求,如病人安全維護以及達到更佳的健康照護體系。因此,互通性的標準為當中關鍵的角色,未來亦有助於發展各國之間跨境醫療照護實踐。在電子病歷交換方面,從病人病歷摘要、電子處方簽等等,在符合個資保護條件之下,建立互通性標準可使疾病的治療更為完善。歐盟未來將持續鼓勵各會員國之間標準互通性之發展,包含目前行動健康應用程式的使用,以及未來遠距醫療應用。後續,歐盟將從2016年開始至2017年,持續針對標準建立進行討論會議,預計以資金費用補助以及其他政策方式輔導發展,同時也在2016年6月提出規劃說明使歐盟標準化政策發展符合現代化。
美國加州州長於2021年10月6日正式簽署《基因資訊隱私法》(Genetic Information Privacy Act, GIPA), 將於2022 年 1 月 1 日生效。GIPA在聯邦法和州隱私法的框架下,補充建立基因資訊保護機制,規範無醫護人員參與的「直接面對消費者基因檢測公司」(Direct-to-consumer genetic testing company,下稱DTC公司)之個資保護義務,並要求DTC公司執行下列消費者基因資料(去識別化資料除外)之蒐集、利用、揭露,須獲消費者明示同意: 利用DTC公司產品或服務所蒐集之基因資料,應取得同意。其同意書須載明近用對象、共享方式,以及具體利用目的。 初步測試完成後儲存生物樣本,應取得同意。 目的外利用該基因資料或樣本,應取得同意。 向服務提供商外之第三方傳輸或揭露該基因資訊或樣本,應取得同意。其同意書須載明該第三方之名稱。 分析行銷或第三方依消費紀錄所進行之促銷,應取得同意。 上開同意之取得,不可使用黑暗模式(dark patterns)誤導消費者,並必須針對資料或樣本採取合理安全維護措施。 GIPA也新增消費者權利,保障消費者近用權和刪除權,DTC公司須制定政策,使消費者易於近用基因資料、刪除帳戶與基因資料、銷毀生物樣本等,並須於消費者依法撤回同意後30日內銷毀之,不得因行使權利而有差別待遇。DTC公司若GIPA違反規定,消費者擁有私人訴訟權。
歐盟針對體外診療器材提出新管制架構,預期將於2015年正式實施歐盟對於體外診療器材(In Vitro Diagnostic Medical Devices,以下簡稱IVDs)之管制,最早起始於1998年的體外診療器材指令(Directive 98/79/EC on In Vitro Diagnostic Medical Devices,以下簡稱「1998年IVDD指令」),該指令依IVDs是否具有侵入性、接觸病人的時間長短及是否需要能源加以驅動等條件,進一步區分為四種風險等級:第1級(Class I)-低風險性、第2a級(Class IIa)-低至中風險性、第2b級(Class IIb)-中至高風險性、第3級(Class III)-高風險性。Class I因風險性最低,故1998年IVDD指令僅要求廠商建立品管系統、保留產品技術檔案、並自為符合性聲明後,即得於市場上流通;Class IIa與Class IIb則由於風險略高,所建立之品管系統需經過「符合性評鑑」;而Class III的風險最高,故其品管系統除須符合前述要求外,更應由經歐盟認證的代檢機構(Notified Body)進行審查,通過前述評鑑及審查後,始可於歐洲市場流通使用。 然而,隨著科學及技術的進步,市場上不斷出現創新性的產品,使得1998年IVDD指令已逐漸無法滿足管理需求,輔以各會員國對於指令的解釋和實施各有不同,致使歐盟內部在病患及公共健康的保護上有程度不一的落差,為歐盟單一市場的運作埋下隱憂。因此,歐盟執委會(European Commission)於2012年9月26日提出新的管制架構(Proposal for a Regulation of the European Parliament and of the Council on in vitro diagnostic devices),其主要變革包括: 1. 擴大IVDs的定義:將IVDs的範圍擴及用以獲取醫療狀況或疾病罹患傾向資訊(如基因檢測)的器材及醫療軟體(medical software)等。 2. 新的分類標準及評估程序:將診療器材重新分為A、B、C、D四類,A類為風險最低,D類為風險最高。A類維持原先1998年IVDD指令中的廠商自我管控機制,但當A類器材欲進行臨床測試(near-patient testing)、具備評量功能或用於殺菌者,須先由代檢機構就其設計、評量功能及殺菌過程進行驗證。B類器材因風險略高,故須通過代檢機構之品管系統審查;C類產品除品管系統審查外,需再提交產品樣本的技術文件;而D類由於風險最高,除前述品管系統審查外,需經過核准使能進入市場。至於A、B、C、D類產品進入市場後,代檢機構會定期進行上市後(the post-market phase)監控。 3. 導入認證人員(qualified person,簡稱GP):診療器材製造商應於組織內導入GP人員,負責確保製造商組織內部的一切法令遵循事宜。 4. 落實提升透明度(transparency)之相關措施:為確保醫療器材的安全性和效能,要求:(1) 歐盟市場內之經濟經營商(economic operator)應能夠辨認IVDs的供應者及被供應者;(2) 製造商應將單一裝置辨識碼(Unique Device Identification)導入產品中,以利日後之追蹤;(3) 歐盟單一市場中的所有製造商及進口商,應將其企業及產品資訊於歐洲資料庫(European database)中進行註冊;(4) 製造商有義務向大眾公開高風險性裝置的安全性與效能等相關說明資訊。 歐盟執委會已提交新管制架構予歐洲議會,若順利通過將可望於2015年起正式實施,未來將對歐洲IVDs產業有何影響,值得持續觀察之。
歐巴馬旋風之商標影響力美國總統歐巴馬在選舉前後已對於產品市場,造成一股莫大的熱潮,商人們都想藉由這股熱潮來獲得利益。可以從口號「Yes We Can」、「Change」的利用及一系列歐巴馬肖像相關產品充斥於產品貨架上得以瞭解。然而,這樣的現象,美國白宮律師正著手處理保護總統的發言權及肖像權,且在不損民眾熱情之下制定規範以進行管理。 在美國總統大選期間,已有數家美國企業向美國專利商標局 (United States Patent and Trademark Office, USPTO)提出新商標申請。1月份即有73件混合歐巴馬名字為商標之申請案,其中包括填充玩具「Bearak Obama」、「ObamaLlama」、棒棒糖「Obama」、「Obama vodka」、啤酒「Obamanator」、服飾「Obamanation」、鞋子「Obamaniac」以及「Broccoli Obama」於冷凍蔬菜,冰淇淋公司Ben Jerry’s ice提出「Yes Pecan」,甚至有出版業者提出「Obamaland」之商標申請。在歐洲也是如此,Benelux Office for Intellectual Property (BOIP) 也有二件申請案,「Obama」雜誌、音樂及「Obama」花卉種籽。目前已經有些商標申請案被USPTO駁回,如「Obama vs Osama」。 Rise & Ries之董事長Al Ries表示:「現在這股歐巴馬風潮是可以理解的,但並不會持續到永遠」。然而,美國白宮律師依舊可能會針對各個情況作判斷以最好的方式保護總統的權利,並且尊重人民使用的權力,必竟歐巴馬是大多數人的驕傲。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).