隨著網路技術的進步,資安事件亦日益加增,為了因應日趨頻繁的網路攻擊,美國總統歐巴馬於2016年7月26日發布了對於美國資安事件發生時聯邦部門間協調之指令(PRESIDENTIAL POLICY DIRECTIVE/PPD-41),該指令不僅提出聯邦政府對於資安事件回應的處理原則,並建立了聯邦政府各部門間對於發生重大資安事件時之協調指引。
指令中就資安事件及重大資安事件進行了定義:資安事件包含資訊系統漏洞、系統安全程序、內部控制、利用電腦漏洞的執行;而重大資安事件則指可能對國家安全利益、外交關係、美國經濟、人民信心、民眾自由或大眾健康與安全發生明顯危害的有關攻擊。 此外,就遭遇資安事件時,列舉出下列幾點作為聯邦政府因應資安事件時之原則:(A)責任分擔;(B)基於風險的回應;(C)尊重受影響者;(D)政府力量之聯合;(E)促進重建及恢復。
聯邦政府機關於因應資安事件時,需同時在威脅、資產及情報支援三方面上做相關之因應。其中司法部透過轄下聯邦調查局(Federal Bureau of Investigation, FBI)、國家網路調查聯合行動小組(National Cyber Investigative Joint Task Force, NCIJTF)負責威脅之回應;國土安全部(Department of Homeland Security, DHS)則透過轄下的國家網路安全與通訊整合中心(National Cybersecurity and Communications Integration Center, NCCIC)負責保護資產之部分,而情報支援部分,則由國家情報總監辦公室(Office of the Director of National Intelligence)下之網路威脅情報整合中心(Cyber Threat Intelligence Integration Center)負責相關事宜。如係政府機關本身遭受影響,則機關應處理該資安事件對其業務運作、客戶及員工之影響。另在遭遇重大資安事件時,為使聯邦政府能有效率因應,指令指出聯邦政府應就國家政策、全國業務及機關間為協調。此外,指令中亦指示國土安全部及司法部應建立當個人或組織遭遇資安事件時得以聯繫相關聯邦機關之管道。
該指令加強了現有政策的執行,並就美國機構組織上於資安事件與現行政策之互動做了進一步之解釋。
Spitzencluster-Wettbewerb由德國聯邦教育與科學部(Bundesministerium für Bildung und Forschung,BMBF)自2007年起開始推行,屬該國高科技戰略2020(hightech-strategie 2020)之政策配套措施之一,更是歐盟發展歐洲研發區位計畫(European Research Area)之一環。所謂聚落係建立在德國傳統工業區位分布上,利用群聚效應因應產業技術發展的複雜問題(產業問題非單一技術可解決),使各具專長之學研機構與企業共同分享產業問題研議出解決方案,分擔研發風險與成本等,增強合作效率,促進產業創新及升級。聚落多以成立協會(association)為主,平均每一聚落有近70個企業參與,原則上開放跨國參與者參與聚落之產學合作,並對會員收取會費。 本計畫作為重要的區域產學研合作計畫,乃承襲自德國過去不斷推動的區域產學研合作計畫,其特色是採取競爭方式選出德國境內優秀之聚落,並補助其相關研發計畫。自2007年至2015年間,已有三次選拔,並選出共15個領先聚落,分別涉及領域橫跨航太、資通訊、能源、生技等技術發展。至2015年為止總計已補助超過1300個計畫。2015-2017年將規劃有三次選拔,每回合挑選至多10個聚落獲得補助。目前本計畫已補助3.6億歐元預算,至2017年底將再投入5億歐元預算。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
WHO發布《2019‑nCoV戰略準備和應對方案》呼籲全球加速研發創新以對抗疫情2020年2月3日,世界衛生組織(World Health Organization, WHO)發布《2019新型冠狀病毒戰略準備和應對方案》(2019 Novel Coronavirus: Strategic Preparedness and Response Plan),呼籲全球合作以加速研發創新,對抗新型冠狀病毒(2019 novel coronavirus, 2019-nCoV)。WHO提出的戰略目標包含六大項:限制人與人間的傳播防止疫情擴散、盡速發現並隔離以便提供患者最佳照護、查明並減少動物來源的傳播、加速診斷治療和疫苗開發、傳達重要且正確的風險與事件資訊、透過合作夥伴關係減少疫情對社會經濟影響。而WHO設立的戰略目標,可以透過以下方式實現:(1)加速建立國際協調方案,透過現有機制及合作夥伴關係提升防疫戰略、技術及業務支持。(2)擴大各國家的災難準備與緊急應變行動方案,包括加強準備、迅速發現、診斷並進行治療;在可行的情況下發現並追蹤感染者;強化醫療機構中的感染預防及控制;實施旅行者的健康管理措施;提升人民對疫情風險認識、減少社區交流風險等。(3)加速對2019‑nCoV的研究及創新,優先推動快速篩檢追蹤與擴大研發創新規模、開發候選療法、疫苗及診斷方法,確保醫療資源的公平可用性。藉由防疫標準化流程與知識平台的建立,促進並匯集學界合作的研究成果。 另外,WHO在本戰略中明列出八大衡量指標,用以評估各國因應2019-nCoV的計畫準備與成效,以便WHO能與政府合作,共同改善全球防疫系統。該八大指標分別為:流行病學症狀分析與疫情規模判斷能力、戰略準備及預算管理計畫、防疫物資供應程度、研究開發與臨床實驗比例、國家公共衛生系統疫情準備能力、建構檢驗與快篩的即時通報系統、完善診斷流程與安全隔離措施、疫情報告與資訊分享機制等。