新國際協定針對未經請求之行銷電話或電子訊息展開聯合行動

  加拿大隱私專員於2016年6月14日表示,制定支持全球電信監管機構和消費者保護機構,針對垃圾郵件和行銷騷擾電話之跨境共同合作協議。

  倫敦行動計畫(London Action Plan)備忘錄(MOU)之簽署國,現已可針對打擊跨國界或逾各個國家監管部門範圍之犯罪從事者的執法行動,相互分享資訊和情報,以獲取協助。

  包括加拿大隱私專員辦公室(OPC)在內,目前既已簽署方分別為:澳大利亞通訊及傳媒管理局;加拿大廣播電視和電信委員會、韓國訊息安全局(KISA)、荷蘭消費者和市場監管局(ACM)、英國資訊委員辦公室及公民諮詢局、紐西蘭內政部、南非國家消費者委員會、美國聯邦貿易委員會和聯邦通訊傳播委員會。其他國家之政府當局亦表示願提交備忘錄,以及將來可能加入之意願。

  對於加拿大隱私專員辦公室而言,這項協議將有助於達成加拿大反垃圾郵件法(CASL)關於電子郵件地址蒐集和間諜軟體之調查義務與責任,並與具有相同任務之夥伴機構間,進行偵查技巧及策略之分享。

  加拿大隱私專員辦公室致力於和國內及國際夥伴合作,並已與國內之CASL執法合作夥伴及其他許多國家的隱私保護機構簽訂協議。

相關連結
※ 新國際協定針對未經請求之行銷電話或電子訊息展開聯合行動, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7534&no=55&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
何謂物聯網(Internet of Things, IOT)?

  物聯網是指明確可辨識的實體物件與虛擬的類網路代理架構的聯結。它是由馬克.維瑟於1991年所提出,指的是(個人)電腦作為機具設備的形式未來將逐漸消失,而替換為"智慧元件"的形式。當前人們關注的對象已經不再是物體本身,而是人們的各種活動中的物物相連。其在不知不覺中已經提供人們各式各樣的輔助,例如小型化的嵌入式電腦毋需操作,就可以提供各式各樣的輔助。這種微型的電腦,即所謂的穿戴式裝置,可以最大程度地結合不同感應器直接在服裝上出現。   數位化在多個層面正在改變我們的生活和工作方式。現代資訊技術幾乎使任何對象無論是家庭日常物品或工廠內的機器,都能用最小的空間達到強大的計算能力(所謂的“嵌入式系統”)。烤麵包機,洗衣機和機床都可由軟體控制,並可以透過網際網路相互、或與外部世界聯結。   物聯網在居家領域具體將以智慧住宅(Smart Home)形式呈現。運用智慧聯網技術將能獲得更多的舒適性和安全性、節約能源或提供適合各年領階層的生活與和起居。現有的解決方案可以透過智慧型手機遠端控制進行空調、電爐和燈具的使用。未來,洗衣機甚至可以自動尋找最優惠的電價決定洗衣服的最佳時間。   智慧家居若要成功,需得到消費者的接受。故物聯網解決方案必須具有可信賴性(資料保護、資訊安全)、能夠持久並可靠地運作,並能夠在未來繼續穩定地投入智慧家庭的行列。對於製造商和供應商而言,應該以在新的立場和視角來開拓一個新的市場。

保護、分級與言論(下)

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP