SZ DJI Technology Co.和DJI Europe B.V.(下簡稱DJI)來自中國,是世界上最大的無人機製造商,DJI向加州中區聯邦地區法院起訴科技新興公司Yuneec Intemational Co.Ltd.和Yuneec Usa Inc.(下簡稱Yuneec)涉嫌侵害其跟踪移動目標系統,和可拆卸支架360度攝影機鏡頭的兩項專利,且請求法院發布禁制令,以阻止進一步銷售,並請求損害賠償。
這兩項專利,一為美國專利編號9164506“跟踪移動目標系統”,一旦遠端操作員指定了目標,無人機會自動跟蹤並保持相機拍攝目標;另一個專利為美國專利編號9280038,可讓無人機的照相機旋轉360度進行拍攝,並連接到分離的手持式攝像機,DJI強調公司多年來為開發該產品投注相當的時間和資源。
總部位於香港的Yuneec在一月的消費電子展(Consumer Electronics Show)上引起轟動,Yuneec使用GPS感知技術避免危險區域如機場,媒體於消費展後的報導稱Yuneec的無人駕駛飛機已經威脅到DJI市場上的地位。
Yuneec在5月25日向加州中區聯邦地區法院提起反訴認為其無侵權,並表示目標跟踪是一個抽象的概念不能以此申請專利,“跟踪是一個古老的概念” Yuneec的代表律師威爾遜表示,“該506專利並不是要揭露新的跟踪技術,相反的它只是描述並使用眾所周知的無人機的跟踪技術“。而另項專利可拆卸的支架360度攝影機鏡頭,如GoPros已有類似的產品,甚至遠比DJI的產品還早之前。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
德國在2000年以後便將聯邦政府補助的其中一個方向集中在鼓勵科技創業,主要推動機關為聯邦教育暨研究部(Bundesministerium für Bildung und Forschung, BMBF)與聯邦經濟暨能源部(Bundesministerium für Wirtschaft und Energie, BMWi)。其中BMWi的EXIST計畫訴求建立一個科技創業有善的環境,並分三項子計畫運作:EXIST創業文化計畫(EXIST-Gründungskultur),EXIST創業補助計畫(EXIST-Gründerstipendium),EXIST研發成果移轉計畫(EXIST-Forschungstransfer)。 其中,EXIST創業文化計畫著重於在學研機構內塑造創業文化,誘發學研機構創業潛力與企業家性格;EXIST創業計畫則是鎖定學研機構內的個人(科學家、研究生、大學生),希望透過對這些個人的生活補助,使其商業發想可化為營運計畫書(Businessplan),進而開發成為商品或服務;EXIST研發成果計畫則是透過經費補助,鼓勵學研機構內的研究團隊利用設立衍生公司方式運用研發成果,在創業前的籌備階段與公司設立初期導入專業團隊,協助評估相關的創業理念、經營模式、財務評估與資金運用等規劃是否妥適,使公司創立的籌備更為妥善且禁得起市場考驗。
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。
政府採購電腦 強制採雙作業系統過去中信局的標案,大多以提供兩種不同的作業系統,供政府機關及學校等公務單位選購,但因大多數的政府機關不瞭解辦公室的電腦是否與 Linux 相容,加上缺乏資訊專業人員,最後絕大多數仍以採購視窗作業系統為主。 由於今年立法院在審查預算時,加了附帶決議,要政府機關採購微軟產品的金額要減少 25% ,故中信局最近在執行政府資訊產品採購時,首度強制投標的個人電腦業者,要通過「 Linux 軟硬體相容性基本驗證規範」,從第 11 標開始(案號 LP5 940025 ),明訂投標的廠商要提供符合「基本中文化實用性測試應用規範」(具備瀏覽器、電子郵件、文書處理等功能)的 Linux 作業系統,並通過「 Linux 軟硬體相容性基本驗證規範」。換言之,未來桌上型電腦出貨都必須採雙作業系統( Linux 與 Windows 並存),可望有效帶動 Linux 相關軟硬體的商機。 中信局指出,第 11 標從 5 月 25 日 公告後,到 9 月底結束,交貨期從 6 月中旬開始,總計今年要採購的 10 萬台到 12 萬台桌上型電腦,都必須是雙作業系統。也就是使用者一打開電腦,會出現 Linux 或 window 作業系統,若要讓使用者選擇 Linux 作業系統,業者得強化教育訓練,同時在後續維修服務也要相當用心。預料各公務單位將因此提高桌上型電腦採用 Linux 的意願,對 Linux 作業系統及相關應用軟體的商機,起相當大的帶動作用。
美國「人工智慧應用管制指引」美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。