911 恐怖攻擊以來,美國持續加強國土安全保護,而為保障國家安全及科技競爭力,美國商務部( US Department of Commerce )原本打算制定安全管制規定, 對來自敏感國家之外國科學家, 限制其 使用部分的實驗研究設備。所謂敏感國家( countries of concern ),包括巴基斯坦、印度、俄羅斯及中國,來自於這些國家的科學研究人員若要在美國境內的從事特定實驗研究,因而需要使用特定設施設備者(主要是可用於軍事用途者),不論研究設施設備是屬於聯邦或民間所有,在開始操作、進行安裝、維護與修繕等之前,必須先向美國政府提出申請始可近用。 現行美國有關技術管制規定主要係針對敏感科技的出口,商務部自 2004 年起,即打算推動修正此等規定,進一步將部分可用於軍事用途之研究設施設備予以立法管制,從美國政府所公布的管制清單來看,其涵蓋範圍甚廣,從化學、雷射到細菌培養等各領域之研究設施設備,均涵蓋在內,故商務部此項修法計畫一經公開,立即震撼外界,除學術界及產業界強烈外抨擊,就連聯邦實驗室也大表反對。反對意見多認為,預計的修正規定將會破壞大學校園中之開放精神,影響科學自由的研究環境;而研究設施設備近用之事前許可制,亦將造成學界與業界的負擔;甚至可能阻礙未來大學或業界延攬外國科技人才參與研究計畫之進行,長期而言,實將會戕害美國的國際競爭力。 面對各界反對聲浪,為避免降低研究型企業之生產力,美國商務部在今年 5 月底宣布取消原來的立法管制計畫,不過,商務部將會召集產學研各界專家,組成一個十二人的委員會,持續就實驗室安全管制的問題交換意見,期能獲致更有效之解決之道。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
調和國際標準!美國食藥署提出醫療器材品質系統規則修正草案美國食藥署(US Food and Drug Administration, FDA)於2022年2月23日提出「醫療器材品質系統規則修正草案(Medical Devices; Quality System Regulation Amendments proposed rule)」。本次修正旨在釐清現行條文與國際標準ISO13485醫療器材品質管理系統之異同,並進行適度調和。 根據修正說明,草案就現行條文與ISO13485一致之處將予保留,不一致者若屬落實授權母法「美國聯邦食品藥粧法(US Federal Food, Drug and Cosmetics Act, FD&C Act)」之必要內容,將斟酌條文用詞明確性調整後予以保留,其餘將予刪除。此外,草案也透過名詞解釋界定不同用語之定義範疇,嫁接現行條文與ISO13485落差處。對於現行條文中,與ISO13485性質相同但內容產生衝突之條文,基於依授權母法意旨,以現行條文為準。 FDA注意到,部分FD&C Act所重視的品質管理系統要求,在ISO13485中並未被重點凸顯,如記錄控管(control of records)、醫材標示(device labeling)及包裝控管(packaging controls)。本次修正特別針對此三部分保留並增補較ISO13485要求更為詳細的規範內容。在記錄控管部分,除依照ISO13485要求,記錄標的應為日期及簽署確認外,進一步依據FD&C Act規定,要求特定的服務及執行紀錄應予以紀錄,以作為醫材報告之內容。此外,也規定應詳實記錄醫療器材單一識別碼(Unique Device Identification, UDI)。在醫材標示及包裝控管部分,由於ISO13485僅指出產品應標示及包裝,但未詳述細節要求。因此,本次修正保留現行條文對於標示及包裝的細節性規定,以確保產品安全性及有效性。 本草案目前進入意見徵集期間,時間自2022年3月25日起至2022年5月24日止。後續FDA將視所徵集之意見,決定是否調整草案內容或公告施行。本次修定將使醫療器材品質系統規則與ISO13485趨於一致,預計可減輕廠商行政作業及支出負擔。
歐盟發布綠色政綱產業計畫,提供綠色轉型、國家補助、供應鏈韌性政策歐盟執委會於2023年2月1日公布「綠色政綱產業計畫(Green Deal Industrial Plan)」,該計畫主要包含淨零產品產業建立、國家補助、強化供應鏈、資金等綠色轉型重要政策。「綠色政綱產業計畫」將透過以下四大支柱協助歐盟進行綠色轉型。 (1)建立可預測、簡化且一致的管制環境 歐盟將提出《淨零產業法(Net-Zero Industry Act)》草案簡化管制框架來支持電池、風車、熱汞、太陽能板、電解、碳捕捉等技術;本法案將分析各產業部門後,建立各部門2030年能力目標,確保產業供應鏈不會遭遇瓶頸,並縮短淨零產品工廠選址和中小企業補助核准流程時間,以及增強核准流程的可預測性。另外歐盟並將提出《關鍵原物料法(Critical Raw Material Act)》草案,以管制生產淨零產品的關鍵物資,並透過回收、來源多樣化等方式來降低歐盟對第三方國家的依賴。 (2)更快的提供充足資金 歐盟將放寬各會員國的補助程序,並提高補助金額上限。另外因應中國和美國對淨零產業的補助,本計畫將提高歐盟與歐盟會員國的淨零產業補助額度,讓補助效果能和其他非會員國的補助達同樣程度。 (3)人才訓練與技術強化 歐盟將透過人才訓練、認證和補助來增加綠色及數位轉型技術之勞動力。 (4)為建立韌性供應鏈開放貿易 歐盟將加強與非會員國的自由貿易協定,增加關鍵原物料來源。歐盟也將透過《外國補助規則(Regulation on Foreign Subsidies)》保護歐盟市場的公平性、調查非會員國的傾銷行為、扭曲市場的補助。