電信產業號碼資料庫之應用與法制議題-以個人隱私保護為中心

刊登期別
2005年04月
 

※ 電信產業號碼資料庫之應用與法制議題-以個人隱私保護為中心, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=754&no=55&tp=1 (最後瀏覽日:2025/12/24)
引註此篇文章
你可能還會想看
以再生能源公司終止併購而衍生之營業秘密糾紛案為鑒,提供企業管理建議

2025年7月30日,美國加州法院指出公司濫用合作談判地位以爭奪再生能源市場之行為,從商業角度極為惡劣,將面臨重大法律風險,並認定Phillips 66能源公司須向Propel Fuels(下稱Propel)競爭公司給付共約8億美元的賠償金。 本案源於2017年,Phillips 66公司以收購為由,雙方簽署收購意向書,對Propel公司進行盡職調查。於此期間,Propel公司依保密契約向Phillips 66公司揭露其再生柴油專屬策略與資訊,Phillips 66公司並從 Propel 下載近 3千份包含營業秘密的紀錄。於2018年8月24日,Phillips 66公司突然終止收購並於下一工作日向加州監管機構宣布其將加入加州再生能源市場,2019年正式銷售高混合可再生柴油。 2022年2月16日,Propel公司向加州法院控訴Philips 66公司不當使用Propel公司花費13年研發得出之財務與銷售資料、營運模式及其再生能源業務的預測資料等營業秘密,致Propel公司損失2億美元。於2024年10月16日,本案認定Phillips 66公司違反加州統一營業秘密法(Uniform Trade Secrets Act),不當使用Propel公司的營業秘密, Phillips 66公司應賠償6.049 億美元。其後,本案認定Phillips 66公司行為屬惡意不當使用營業秘密,依加州統一營業秘密法,法院可另將懲罰性賠償金增加至2倍。2025年7月底,本案認定之賠償金達到8億美元,包含自2024年之6.049億美元的補償性賠償金,以及因Phillips 66公司「惡意」不當使用營業秘密的行為,追加1.95億美元的懲罰性賠償金。 綜觀前述實務案例可得知,即便公司間已簽訂保密契約,仍存在公司假借併購盡職調查、合作協商為由,要求他公司提供機密資料。為降低與外部合作而衍生之機密外洩風險,以下為公司提供資料對外之前、中、後階段可參考之管理建議: 1. 對外提供資料前 (1) 內規定義營業秘密搭配機密分級,了解營業秘密之範圍,並依據不同機密等級採取相應的管制措施。 (2) 對外提供資料前,營業秘密相關之權責人員應審查資料適合揭露與否。 (3) 與外部合作協商前,即應確認簽訂保密契約與約定權利歸屬。 2. 已對外提供資料 倘若已對外提供資料,建議採取限制流通、限制權限等作法,如僅限該合作計畫相關人員透過身分認證登入帳號,方有線上瀏覽機密之權限等方式。 3. 對外提供資料後 於合作結束或協商破局之情況,應要求合作方返還或銷毀營業秘密,如為銷毀,應附上相關聲明並佐證執行紀錄。 前述建議之管理作法已為資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」所涵蓋,企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

營業秘密管理概要

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

FCC主席Julius Genachowski警告美國恐有頻譜危機

  美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )主席Julius Genachowski表示,美國政府正努力規劃商業用途頻譜(spectrum)供給量,以滿足通訊科技服務發展需求。惟諸多產業專家預測無線通訊服務運用導致頻寬需求快速增加,無線通訊擁塞情況恐將嚴重惡化。   儘管FCC已藉頻譜拍賣釋出不少頻譜,且2009年6月全美廣電數位化後(DSO),一定要件開放業者毋須取得頻譜執照便可使用所謂的「閒置頻譜」(interleaved/white space),但是頻譜匱乏的問題仍無法解決。   對此,FCC允諾將會弭平頻譜供給需求間的落差,並且列為FCC的首要任務之一。未來FCC將透過非商用頻譜重分配與鼓勵發展更有效率使用頻譜之科技,以期解決頻譜不足的窘境。   產業界與公眾安全通訊相關組織呼籲FCC應提供更多頻譜供無線通訊服務使用。不過FCC亦要求資通訊產業於研發行動寬頻新產品時,須設想頻譜供給不足,研發更有效率使用頻率的通訊技術。產官學三者間,必須相互配合與協調(尤其是業者間的「不歧視原則」),方能有效解決網路通訊擁塞及頻譜匱乏問題。

TOP