日本推出智財訴訟保險協助中小企業海外發展

  配合日本經濟產業省與日本特許廳同時於今(2016)年6月8日公布以中小企業為對象所新設的海外智財訴訟費用保險制度,損害保險JAPAN日本興亞(株)於同年7月在日本開始販賣「(國內企業)智財訴訟費用保險」,涵蓋的智財保險對象包括發明專利權、實用新型專利權、設計專利權及商標權。

  本次損害保險JAPAN日本興亞(株)所提出的方案為每年保費15萬日幣,每件海外智財訴訟案件補償額度上限為1千萬日幣,補償的項目為訴訟或仲裁所須支付的手續費、律師費、鑑定費、訴訟顧問費等。

  根據日本特許廳的公布內容,欲加入海外智財訴訟費用保險制度的中小企業,須透過指定的機構(目前為日本商工會議所、全國商工會聯合會及全國中小企業團體中央會),以該指定機構會員的名義向配合的保險公司提出申請。前述配合的保險公司除了損害保險JAPAN日本興亞(株)之外,還有東京海上日動火災保險(株)及三井住友海上火災保險(株)。

  日本特許廳透過前述指定機構,除了對加入智財訴訟費用保險的中小企業補助一半的保險費用之外,當日本中小企業在海外開展業務時,若捲入智財侵權訴訟,透過此保險制度更對已加入智財訴訟費用保險的中小企業補助一半的海外訴訟費用。日本政府新設此保險制度並輔以補助保險費的方式,鼓勵中小企業善加利用,藉此減輕中小企業的負擔、緩解中小企業拓展海外業務的擔憂,並有助於「跨太平洋夥伴關係協定(TPP)」生效後,日本企業在東南亞地區捲入智財相關訴訟的風險應對。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
※ 日本推出智財訴訟保險協助中小企業海外發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7540&no=16&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美政府將加強對抗盜版與仿冒

  美國歐巴馬政府在6月22日公布一份範圍廣泛的智慧財產執法聯合策略計畫(Joint Strategic Plan on Intellectual Property Enforcement),目的是希望協同聯邦各部門增強有關智慧財產權的執法力度,以打擊美國境內與境外盜版與仿冒日益嚴重的問題。   智慧財產執法協調員(Intellectual Property Enforcement Coordinator, IPEC)Victoria Espinel在報告前言指出,打擊仿冒和盜版需要聯邦強而有力的反應;作為全球創新領導者的美國已因為有些國家未能依照法律規定或國際條約來執法或採取不利美國之產業政策而被傷害。此計畫提出33個執法策略行動項目(enforcement strategy action items)來加強智慧財產執法,包括增加執法政策透明度以及美國境內、外執法行動的分享與報導、確保政府各層級間的執法效能與協調、加強美國智慧財產權的國際執法、確保安全的供應鏈以杜絕侵權產品輸入美國等。   舉例而言,該計畫非常關注外國網站線上侵權(online piracy)的問題,認為網際網路不應成為犯罪行為的工具,強調美國政府必須和外國政府、國際組織以及私部門共同合作對抗,並鼓勵內容擁有者(content owners)、ISP業者、廣告經紀商(advertising brokers)、付款處理業者(payment processors)和搜尋引擎業者在尊重合法競爭、言論自由與個人穩私之下,彼此合作謀求實際解決方案。根據報導,盜版已造成美國的影視業年度損失205億美元產值、工作者年度短少55億美元的收入、也減少了原本可帶來多於14萬個的工作職缺,結果使美國年度稅收短少了8.37億美元。

德國「真實實驗室」

  德國政府意識到伴隨數位化發展的創新科技和商業模式雖然提供了許多機會,但往往容易對消費者、產業和社會產生顛覆性影響,此類影響通常難以在短期內權衡利弊,從而不易對其訂出具體合適的規範,例如德國新創公司Lilium、奧迪子公司Italdesign、以及歐洲航空巨擘Airbus都有意發展的空中計程車計畫,雖有無限想像空間,但卻很難在短期內評估出可能隨之而來的安全、(空氣或噪音)汙染、就業等方面的不利影響,進而制定出寬嚴適中的規範。有鑑於此,德國聯邦經濟及能源部(Bundesministerium für Wirtschaft und Energie, BMWi)於2018年12月10日提出「真實實驗室戰略」(Reallabore Strategie),旨在營造一個前瞻、靈活、可支持創新想法自由發揮的法規環境,同時也希望藉由在真實實驗室運作所得之經驗數據,了解創新的機會和風險,進而找到正確的監管答案。   「真實實驗室」(Reallabore)係指允許在特定時間及真實環境範圍內,進行創新科技與商業模式發展測試,而無需擔心與現行監管規範有所牴觸的創新試驗制度,其與「生活實驗室」(Living Labs)和「實驗場域」(Experimentierräume)、「沙盒」(Sandbox)、「領航計畫」(Pilot Project)等概念類似,與我國「金融科技創新實驗」及「無人載具科技創新實驗」之制度規範亦有異曲同工之趣,但更著重在探索未來的監管方向,簡而言之,「真實實驗室」就是一個創新想法與監管規範的試驗空間,德國聯邦經濟及能源部(BMWi)為具體傳達其概念,對其特徵作了如下描述:(1)可以進行數位創新試驗的特定時空環境(2)可以支持創新想法自由發揮的法規環境(3)可以從中進行監管學習並確定未來監管方向與具體細節。

加拿大聯邦政府預計2018年於全國落實碳排放費用徵收

  加拿大總理賈斯汀.杜魯道(Justin Trudeau)於2016年10月提出一項改革方案,要求全國各省份或地區於2018年開始,須擇一實施碳稅(Carbon tax)制度或碳交易系統(Cap-and-Trade System):前者,聯邦政府將制定徵收下限,從2018年每噸10元,逐年提高10元,直至2022年每噸50元為止;至於碳交易系統,則須設立嚴格管控規範,以達聯邦政府實施碳稅制度所得減少碳排放量之預期值。同時,杜魯道更進一步表示,費用將交由各省區自行向排放者進行徵收,並可就其所得作自由運用,反之,倘若未確實執行該項政策者,聯邦政府則將強制介入實施。   事實上,綜觀國際間徵收碳稅制度,主要有兩種類型:一類為全國落實碳稅徵收,例如:荷蘭、丹麥、德國或南韓等,其中尚可再細分是否作為一獨立稅目進行徵收,前述荷蘭及丹麥二國,即直接設立碳稅進行徵收,至於德國與南韓,則是將碳排放作為能源稅之計算因子之一作收取;另一類為國內部分地區自行決定收取,如:美國加州地區及原先加拿大不列顛哥倫比亞省與魁北克省等。   至於未來觀察重點,應在於加拿大實施上述碳排放費用徵收政策後,勢必對於民生消費習慣具相當程度影響,諸如:暖氣、民生用電、交通工具燃料、公共運輸、食品、服裝或其他消費服務,預期均有相應之漲幅,再者,各省區之經濟政策及投資環境,亦可能有不小程度之衝擊,此兩處後續發展,均值得作持續性觀察。

TOP