瑞典最高法院(Högsta domstolen)於2016/04/04 針對維基基金會(Wikimedia Sverige)與瑞典照片藝術著作權團體(Bildkonst Upphovsrätt i Sverige-BUS)之訴訟案,認定維基基金會無權經由網路提供公共藝術品資料庫(Swedish WikiMedia Art Map)予公眾使用。
本案由瑞典視覺藝術著作權團體於2016/06在瑞典斯德哥爾摩地方法院向維基基金會以侵犯藝術家(konstnärer)對其作品在線上之公眾提供權而提起訴訟。此案爭點在維基未得藝術家之同意前,維基是否可免費提供公共藝術品資料庫供大眾接近使用。因本件訴訟涉及瑞典著作權法24條第1項公共藝術品之轉載重製(24 § Konstverk får avbildas)。瑞典斯德哥爾摩地方法院依民事訴訟法第56章第13條向瑞典最高法院針對此爭議提出判決前置問題(beslut av tingsrätten om hänskjutande enligt 56 kap. 13 § rättegångsbalken)。
瑞典最高法院認為觀光客固然可以對置於公共場所之雕塑品等公共藝術品為攝影,但資料庫是否可無限制使用這些照片則是另一問題。公共藝術品照片資料庫被推定有一定某種程度之商業價值,且不論其是否具商業目的,最高法院認定藝術家有權利去主張此價值。
維基基金會認為此判決弱化表現自由中之基本元素之視覺自由(the freedom of panorama)。需強調的是,此決定只是針對公共藝術品資料庫之運用,並不影響私人上傳公共藝術品照片至社群媒體之權利。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
「歐洲資料保護委員會」(European Data Protection Board, EDPB)於2020年2月18日發布GDPR實施情形的報告。報告內容主要聚焦於資料跨境傳輸機制、歐盟會員國間合作機制(含EDPB工作情形)以及中小企業法遵等其他議題。 在資料跨境傳輸機制方面,EDPB歡迎各國提出適足性認定的申請,並表達其在評估是否具有適足性時,將著重於相對方是否能使權利確實執行、矯正措施是否有效執行以及對於持續性的轉移是否有足夠保護措施等。EDPB特別建議執委會,應保守看待G20或G7等會議所進行的「資料自由流通」概念,並確保個資保護水準不會因此受到影響。 而在其他跨境傳輸機制上,EDPB建議歐盟執委會應儘速更新標準契約條款,使其能與GDPR規定相符;同時其公佈目前正在審查40個「拘束性企業規則」(Binding Cooperation Rules, BCR),預期至少半數將於2020年審結;而在驗證及行為準則方面,EDPB預期將於2020年底完成相關指引的公告。 在歐盟會員國間合作機制上,EDPB強調其將著重於探討新興技術發展如何兼顧個資保護,以使GDPR作為技術中立的架構,能在保護個資同時兼顧創新。此外,EDPB承認由於各國程序規範上的差異,使得合作面臨挑戰,其建議歐盟執委會持續觀察程序差異對於GDPR執行成效上的影響。EDPB同時認為目前各國監管機構所獲得的資源仍然不足,建議各會員國應提供監管機構更充足的資源。 在中小企業議題上,EDPB承認GDPR對中小企業帶來挑戰。對此,除已由各國監管機構提供相關支援外,EDPB也將持續投入相關支援工具的開發,以減輕中小企業的負擔。 整體而言,EDPB認為GDPR實施大體上是成功的,並能提高歐盟法律體系在全球的知名度,目前並無修改GDPR的需求。 根據GDPR第97條規定,歐盟執委會應於本年5月25日前針對跨境資料移轉、歐盟會員國間合作機制等GDPR落實情形向歐洲議會及歐盟理事會提交評估報告;並於此後每4年提交一次。EDPB此一報告係為提供執委會完成前述報告參考而做。
美國提出「個人資料隱私暨安全法案草案」,規範聯網環境商業應用及隱私權利面對層出不窮資料違背或身份竊盜事件,2014年初, FTC於美國國會的例行會議上,就數位時代關於隱私權之保護課題進行作證,會議中,FTC乃呼籲美國國會應立即通過制定一個更強的聯邦資料安全與違背提醒的法律,其也進而提出「個人資料隱私暨安全法案(草案)」 (Personal Data Privacy and Security Act of 2014, S.1897)。該草案主要分成兩大部分: 第一部份,將強化身份竊盜和其他違反資料隱私與安全之懲罰;第二部份,係關於可茲辨識個人資料(PII)之隱私和資訊安全。 法案第202條係關於「個人資料隱私與安全機制」(personal data privacy and security program),目的在強化敏感性可茲辨識個人資料的保護,從行政(administrative)、技術(technical)和實體(physical)三個構面的防衛機制,進行相關標準之制訂與落實。有關適用之範疇,乃就涉及州際貿易之商業實體,而該州際貿易包含蒐集、近取、傳輸、使用、儲存或在電子或數位格式處理可茲辨識個人之敏感性資料,而這些資料總計多達1萬筆以上,然而,將不適用於金融機構(financial institutions)、醫療保險轉移和責任法(HIPPA)所管制者、服務提供者(service provider)和公共紀錄(public records)。 而在機制設計上,也係從「設計」(DESIGN)、「風險驗證」 (RISK ASSESSEMENT)和「風險管理」(RISK MANAGEMENT)三個角度進行切入,也必須確實提供員工教育訓練(TRAINING)、弱點測試(VULNERABILITY TESTING)、定期驗證和個人資料隱私與安全之更新,另外,在與外部與服務提供者(例如ISP)之關係上,公司必須盡到適當勤勉的義務(due diligence),也必須透過契約(contract)方式,約定前述所建置起之資料隱私安全機制,並在安全性遭受到侵害時,以合理方式通知締約他方。 本案目前在聯邦參議院已經二讀通過,已交付參議院司法委員會進行下一階段的審議,該立法草案未來是否會直接或間接影響物聯網環境生態系統之商業運作,有待未來持續關注之。
美國國會提出「不被追蹤網路資訊保護法案」「不被追蹤網路資訊保護法」(Do Not Track Me Online Act of 2011)的內容為法律規定企業必須提供選項給消費者選擇退出不被網路追蹤的機制,例如廣告商為了廣告的行銷,以網路技術追蹤消費者軌跡,廣告商必須提供消費者退出被追蹤的選項,給消費者作選擇,主要的目的在保護消費者資訊不被網路技術追蹤而洩漏隱私,若是此法案通過後,可以藉此保護消費者的網路隱私權。 在2010年12月由美國聯邦交易委員會(U.S Federal Trade Commission, FTC)的網路隱私報告中初步提出Do Not Track Me Online Act,美國國會議員在2011年提出此法案進行討論,若是通過後,將會有效限制線上廣告及社群媒體追蹤消費者使用網路的行為,並且防免其將個人資料分享予其他企業,及有效限制線上廣告及社群媒體追蹤消費者使用網路。對於行政機關來說,能夠藉此協助美國聯邦交易委員會建構整體的不被追蹤網路法案標準。若業者未遵守此法案提供退出機制,美國聯邦交易委員會將可能提起不公正及詐欺訴訟,而發動此一訴訟的人員為各州檢察總長。 為了保護隱私,不被追蹤網路資訊法案的提出十分需要,對於企業是否能追蹤消費者的網路活動,消費者因此擁有選擇權。在美國聯邦交易委員會去年12月初步提出此法案後,許多網路瀏覽器例如Mozilla及Explorer紛紛改進技術,以提早因應不被追蹤法案的實施,而廣大消費者團體的也紛紛支持此法案,認為可以因此保護消費者的網路隱私權。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。