美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
促進頻譜使用效率--美國啟動獎勵拍賣機制為了滿足行動寬頻時代對於無線頻譜的需求,美國規劃了多種不同的頻譜釋出、分享或共用的政策,以增加可用的頻寬或提高使用效率,其中針對既有的數位無線電視服務所使用的頻譜,則提出「獎勵拍賣機制(incentive auctions)」。此機制最初於2010年由FCC提出,其特色在於具備自願性及市場導向兩項內涵。本次美國啟動獎勵拍賣機制,主要目的為藉由新業務之頻譜拍賣,將所得之部分標金作為誘因,以鼓勵廣播電視業者繳回原有頻譜使用權,並促進美國寬頻計畫(National Broadband Plan)之發展。目前針對此機制,美國國會已於2012年2月22日正式授權FCC執行。而FCC則於2012年10月2日發布FCC 12-118法規制定建議通知(Notice of proposed rulemaking, NPRM),並依據美國「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012)之授權,針對廣播電視頻譜獎勵拍賣機制進行商擬,並廣徵各界建議。 本次廣播電視頻譜獎勵拍賣機制主要可區分為三個步驟,(一)反向拍賣(reverse auction),指廣播電視業者藉由投標之方式,標得原持有頻段之自動放棄權。(二)頻譜重組(reorganization or repacking),此步驟是為了讓廣播電視頻譜藉由重組後,可釋出部分的超高頻(UHF)頻段以作為其他業務使用。(三)正向拍賣(forward auction),即針對頻譜進行重新授權,對此FCC提出將以更為彈性的概念使用頻譜。 目前整體拍賣機制尚處發展階段,各步驟內部運作應如何規劃,FCC仍積極尋求外界建議。不過從FCC所提出的五項關鍵政策目標(key policy goals)中,亦可歸納出未來整體機制的規劃方針包含(一)提升頻譜效能,期望未來得以5MHz為拍賣單位,並且支持各類無線行動技術如W-CDMA、HSPA以及LTE技術之發展、(二)確保不干擾鄰近國家頻譜之使用、(三)發展各頻段之通用性(interchangeable),促進各頻譜區段在重新配置後具備可替換性、(四)刺激頻譜回收達理想數量,以及(五)促進頻譜技術中立概念。面對美國在提升頻譜使用效率策略上又一記新嘗試,即便目前仍有許多不確定因素亟待突破,但就促進頻譜使用效率而言,亦不失為頻譜交易機制之外,另一可參考之方向。
日本推升農業資料契約指針成為補助計畫要點日本農林水產省(以下簡稱農水省)從2021年起於補助計畫要點中規定,農業關係人利用農水省補助金導入智慧農機、無人機、農業機器人、IoT機器等所產生資料,且為系統服務業者取得、保管的情況下,須符合2020年農業領域AI資料契約指引要求之相關程序(下稱GL合規)。系統服務業者可依據農水省網站所提供的GL合規CHECKLIST,自行向律師、專利師等諮詢,評估其與農業資料提供者間契約是否GL合規。農水省亦於2020年年底召開兩場相關說明會,條列出須GL合規之補助計畫清單,且相關計畫規定預計於2021年生效(2021年1月6日至2月10日公開招募之智慧農業實證計畫即已有相關規定)。 前述規定係源自於2020年7月17日日本閣議通過最新版「規制改革實施計畫」,其中與「農業資料利用」相關實施項目為:利用農水省補助金導入智慧農業機械時所締結之契約,應符合2020年農業領域AI資料契約指引之核心精神,保障農民可使用其提供給系統服務業者所保管之數據資料。日本政府為促進農業關係人提供資料,於2020年制定農業領域AI資料契約指引,做為農業資料提供者與智農機具系統服務業者訂立契約時之參考。為更進一步促使系統服務業者獲得農業資料提供者的信賴,透過規制改革實施計畫,將該農業資料契約指針推升成為補助計畫要點,可作為我國農業領域推動資料提供、保護、或流通運用機制之借鏡。