今年7月,美國國會議員Issa提出了《2024年訴訟透明法案》(H.R. 9922, the Litigation Transparency Act of 2024,下稱《訴訟透明法案》),要求當事人揭露民事訴訟中所取得之金融支援的來源,如商業貸款機構等,以提高訴訟透明度並降低濫訴之情形,惟此提案恐導致美國新創及中小企業更難成功起訴竊取其專屬技術之大企業。 近年來,許多大型科技公司從較小的競爭對手竊取其專屬技術,然而僅有少數案例成功取得賠償金,如:伊利諾州地方法院要求Amazon向軟體公司Kove IO支付5.25億美元的賠償金等。這是由於新創及中小企業縱有證據證明其智慧財產權被盜,在訴訟中多面臨沒有足夠資力與大型科技公司抗衡之窘境,因此往往被迫接受遠低於其所受損失之和解金。透過這種方式,大型科技公司能掌握技術並支付低於取得該技術授權所需之成本,因此被稱之為「有效侵權(efficient infringement)」。 新創及中小企業近期透過與第三方金融資助者協議共享訴訟取得之賠償等方式,降低其進入訴訟程序的經濟門檻,以對抗大型科技公司所採取之「有效侵權」。然而最近一系列案例顯示,中國大陸所支持的第三方金融資助者助長了針對美國企業之智財訴訟,引發了國家安全問題,故立法者為降低營業秘密被外國競爭對手取得之風險、避免無意義之訴訟被廣泛提起,要求當事人揭露其於民事訴訟中所取得之金融支援來源。若《訴訟透明法案》通過,原告所採取之法律策略將可能外洩,而第三方金融資助者亦將受到各方之抨擊,進而導致新創及中小企業在訴訟中更難取得金融支援。 綜上所述,若要降低訴訟之可能性,新創及中小企業須強化其對於專屬技術之保護,從根本減少專屬技術洩露之風險,以避免訴訟發生或進入後端訴訟。有鑑於新創及中小企業與大企業相比,在智財保護觀念上更接近學研單位,且對於營業秘密之管理多未臻完備,因此為確保其能有效落實對營業秘密之管控,建議新創及中小企業可參考智慧局所發布之《學研機構營業秘密管理實作要領》,量身訂作符合自身需求的營業秘密管理制度,並循序完善相應之營業秘密管理措施,以降低專屬技術被竊取的風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
運作技術成熟度(Technology Readiness Level)進行技術評估運作技術成熟度(Technology Readiness Level)進行技術評估 資策會科技法律研究所 法律研究員 羅育如 104年10月22日 壹、前言 為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。 科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。 技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。 由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。 貳、技術成熟度說明 技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。 TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。 TRL 1 基礎科學研究成果轉譯為應用研究。 TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。 TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。 TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。 TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。 TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。 TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。 TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。 TRL 9 實際系統在真實場域達成目標。 參、技術成熟度應用 技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。 一.技術成熟度用來衡量技術開發階段 這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。 二、技術成熟度用來管理技術研發風險 研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。 需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何? 三、機構角色以及補助計畫定位 TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。 TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。 肆、結論 TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。 TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。 由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。 [1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。 [2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995). [3] id. [4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015). [5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。 [6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015). [7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009). [8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。 [9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015). [10] 同註7。 [11] 同註7。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。
美國對於智慧聯網 IoT 環境隱私保障展開立法工作有鑒於智慧聯網IoT環境下,許多智慧型手持裝置及行動通訊裝置,大量蒐集消費者資訊之隱私權暨資訊安全考量,美國國會於2013年5月10日提出「應用軟體隱私暨資訊安全保護法草案」(Application Privacy, Protection, and Security Act of 2013, APPS Act of 2013, H.R. 1913)進行審議。「應用軟體隱私暨資訊安全保護法草案」草案針對應用軟體(Application)在蒐集消費者資訊前,如何落實「同意」機制,乃強制行動通訊裝置應用軟體開發商(developer)應:(1)提供使用者個人資料蒐集、使用、儲存及公開之通知(notice),而該通知含括所蒐集個人資料之種類、使用目的、有償公開第三者之類別及資料儲存等;(2)取得使用者之同意(consent);消費者依據該草案亦有權撤銷其「同意」(withdrawal of consent)。此外,草案乃強制要求該行動通訊裝置應用軟體開發商,就非法近取之個人資料及經去識別化應用軟體蒐集之個人資料,應採取合理及適當之防衛措施(security measures on personal data and de-identified data)。 並且,針對網路環境下隱私權保護議題,更早之前,美國國會於2013年2月28日提出「線上禁止追蹤法草案」(Do-Not-Track Online Act of 2013) 進行審議。「線上禁止追蹤法草案」草案乃要求聯邦貿易委員會(FTC),就透過個人線上活動追蹤,以蒐集、使用個人資料之行為態樣,進行管制。該管制模式謹據以要求如下:(1)被搜集資料個人應收到簡單、明確、並載明資料使用目的之通知(clear, conspicuous and accurate notice and use of such information),而個人就該通知應予明白之同意(affirmative consent);(2)FTC未來在訂定標準規範時,應(shall)考量所被搜集之資料,是否在匿(隱)名基礎上處理之,遂該資料無法有效被聯結(指認)到特定個人或裝置上;此外,消費者當享有資料不被蒐集的權利(expressed preference by individual not to have personal information collected)。該草案並就違反之個人,設定最高15,000,000美元損害賠償規定。