2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。 日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。 本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。 惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。
美國的全球食品追溯中心(GFTC)提出食品追溯的「關鍵追蹤事項」及「重點資料元素」架構在近來國際食安問題事件頻傳的氛圍下,如何透過食品供應鏈相關資料的紀錄、串接與分析,達到食品追溯(Food Traceability)目的已成為全球性議題。有鑑於此,美國的全球食品追溯中心(Global Food Traceability Center, GFTC)在跨種類的食品供應鏈中針對數位資料的採集和追蹤,以建立共通架構為目的,提出食品追溯的「關鍵追蹤活動」以及「重點資料元素」,作為監管機構和產業界在建立追溯系統時可依循的標準。 由於現今食品供應系統涉及範圍大部分已擴及全球,其複雜性大幅提升了各國政府對整個食品產業的監管以及促進追溯實踐的困難度。隸屬美國食品科技研究所(IFT)的GFTC於2014年8月19日發表了一篇「食品追溯最佳實踐指南」(A Guidance Document on the Best Practices in Food Traceability)報告,指出當食品相關疫情爆發時進行食品追溯即有全球性的需求;該指南主要以食品安全及追溯相關規範的立法者和食品產業界為對象,針對六大類食品產業-烘焙、奶製品、肉類及家禽、加工食品、農產品和海產類提供一個可茲遵循的追蹤架構。在一條食品供應鏈中,有許多環節是進行追蹤時必要的資訊採集重點,被視為「關鍵追蹤活動」(Critical tracking events, CTEs),而各種「關鍵追蹤活動」的紀錄項目即為「重點資料元素」(Key data elements, KDEs)。 根據該指南所定義的CTEs包含: 1.運輸活動(Transportation events)-食品的外部追蹤,包括「運送活動」(Shipping CTE)和「接收活動」(Receiving CTE),指食品在供應鏈的點跟點之間藉由空運、陸運或船運等物理性的移動。 2.轉換活動(Transformation events)-食品的內部追蹤,連結食品經過各種結合、烹煮、包裝等加工的輸入到輸出過程,包括「轉換輸入活動」(Transformation Input CTE)和「轉換輸出活動」(Transformation Output CTE)。 3.消耗活動(Depletion events)-係將食品從供應鏈上去除的活動。其中,「消費活動」(Consumption CTE),指食品呈現可供顧客消費狀態的活動,例如把新鮮農產品放在零售店供顧客選購;「最終處置活動」(Disposal CTE)指將食品毀棄、無法再作為其他食品的成分或無法再供消費的活動。 而紀錄上述CTEs的KDEs例如各項活動的擁有人、交易對象、日期時間、地點、產品、品質等,應將該指南所列出之各項KDEs理解為紀錄CTEs的最基本項目。目前最大的問題是食品監管的要求和產業界執行可行性間的差距,故如何縮小此差距仍為各國政府當前最大的挑戰。
美國加州機動車輛管理局3月10日發布無人駕駛車輛管理方案無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。 無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。 美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。 截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。 人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。
新加坡LTA與NTU及JTC共同宣布建立新加坡第一個自駕車測試中心新加坡陸路交通管理局(Land Transport Authority, LTA)與南洋理工大學NTU及JTC共同宣布建立新加坡的第一個自駕車測試中心,在裕廊東創新特區(Jurong Innovation District)。 其中心設立的目的為協助2016年建立的卓越自駕車測試與研究中心(Centre of Excellence for Testing & Research of AVs–NTU, CETRAN)建立自駕車試驗標準與認證。自2015年來新加坡已逐步建立道路駕駛場域,但此為第一個自駕車測試中心。 此自駕車測試中心的特點在於其充分模擬道路之建設,使自駕車輛可測試與其他車輛或道路基礎設施間的通訊與互動,因此此中心設計並複製模擬真實道路環境。 包含具有1. 道路燈光;2. 專用短距通訊信號發射器; 2. 下雨模擬器;3.洪水模擬器;4. 模擬大樓阻隔,以模擬衛星受干擾的情況; 5. 彎道;6. 道路突起與斜坡;7. 巴士站等設備。其中並設置360度的閉路電視監視系統(CCTV):提供LTA監督與研究自駕車行為,並會將資訊回傳至陸路交通局的智慧交通系統中心,以分析並評估自駕車的上路可行性。