現有法制對公立大學教授技術作價之現況與困難

刊登期別
第27卷,第09期,2015年09月
 

※ 現有法制對公立大學教授技術作價之現況與困難, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7553&no=64&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
美國專利商標局公布2019年專利適格性審查指南

  美國專利商標局在2019年1月4日公布專利適格性審查指南(2019 Revised Patent Subject Matter Eligibility Guidance, 下稱新審查指南)。新審查指南對於如何使用美國最高法院Alice/Mayo測試法第一步驟(步驟2A),判斷專利請求項是否指向司法排除事項(judicial exception),做了兩個主要修改:   (1)明確屬於「抽象概念」的排除事項包括:數學概念、組織人類活動的特定方法與心智活動。新審查指南並舉例說明數學概念包括數學關係、公式或方程式;組織人類活動的方法包括基本經濟原則或實踐、商業或法律互動關係,或管理個人行為或人與人之間的關係或互動;心智活動包括人類在心中執行的思想,例如觀察、評估、判斷或意見。根據新審查指南,審查委員不再需要將專利請求項與過去的判例比較來判斷專利標的是否屬於抽象概念。   (2)將判斷請求項是否指向司法排除事項的第一步驟(步驟2A)改為兩階段測試。首先,審查委員評估請求項是否屬於司法排除事項(自然法則、自然現象、抽象概念),若是,要進一步評估請求項是否有其他要素(element)可將該司法排除事項結合到「實際應用」中。若可,則不屬於司法排除事項。若無法將其結合到「實際應用」中,才須進行Alice/Mayo測試法第二步驟(步驟2B)的審查。新審查指南也對其他要素結合司法排除事項的「實際應用」提供例示,包括:反映電腦功能或其他技術的改進、應用該司法排除事項使特定疾病或醫療狀況的治療或預防產生效果、將該司法排除事項用在特定機器或製品中且在請求項中限定使用的機器或製品、使特定物品轉換到另一種狀態或成為另一種物品。   此修改將增加審查委員以抽象概念核駁專利請求項的舉證負擔,審查委員必須闡明為何發明不構成步驟2A中的「實際應用」,還要在步驟2B證明為何該元素屬於已熟知、常規或習知的行為。因此,新審查指南將使審查委員要以抽象概念核駁發明,特別是軟體相關發明的難度變高。   新審查指南已於2019年1月7日生效並徵求公眾意見,後續還可能會發生變化。此外,由於該指南不具有法律約束力,因此法院將如何根據新審查指南評估核准專利之有效性仍有待觀察。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

英國通過《大英能源法》,設立國營大英能源公司推動淨零與能源安全

面對能源轉型與全球淨零排放目標挑戰,英國於2025年5月15日通過《大英能源法》(Great British Energy Act 2025),法規授權內閣大臣(Secretary of State)指定一間由王室全資持有且依《2006年公司法》(Companies Act 2006)設立之股份有限公司為「大英能源公司」(Great British Energy, GBE)。 根據法規,GBE核心任務包括:推動潔淨能源發展、改善能源效率、降低碳排放、確保能源供應安全,並促進公平供應鏈(包含防止奴役與人口販運),GBE經營模式強調地方參與,須透過具社會效益之專案推動轉型工作。 為支持其營運,法規授權內閣大臣可對GBE提供各種形式的財務援助,包括補助、貸款、擔保、收購股份或資產等。此外,內閣大臣亦有權對GBE發布具拘束力之政策性指示(Directions),並需針對其營運擬定「策略優先事項」(strategic priorities),以成為GBE業務規劃之依據。惟上述優先事項不得涉蘇格蘭、威爾斯或北愛爾蘭議會專屬權限事項,除非經當地部門同意。 為確保公共資源使用之透明性,GBE必須每年向內閣大臣提交財報,內閣大臣再將財報提交國會。同時GBE須每五年接受一次獨立人士(independent person)的績效審查,獨立人士再將績效報告提交國會。法規亦要求GBE應持續檢討其業務對英國永續發展之影響,以確保符合國家長期發展方向。 本法適用於英格蘭、威爾斯、蘇格蘭及北愛爾蘭,並自2025年5月15日正式生效。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

英國劍橋大學技術移轉機制-Cambridge Enterprise Limited Company之介紹

TOP