費城市議會於105年6月17日以13票對4票通過對含糖飲料每盎司課徵1.5美分的稅,預計於106年1月正式實施。
由於含糖飲料,容易導致肥胖及糖尿病,尤其在費城有68%的成人與41%的孩童過胖,此法案目的即在於勸阻消費者將多餘的錢用來購買這些不健康的飲料,希望能藉此幫助他們更健康。此法案通過後,估計每瓶裝兩公升的飲料及六盒裝的蘇打水各將漲價1美元左右,但是牛奶、新鮮水果或蔬菜含量50%以上的飲料則不在課稅範圍。此外,那些可以讓消費者自己添加糖的飲料,譬如咖啡,也不在課稅範圍,這意味著運動飲料、糖水、罐裝咖啡以及已添加糖的茶類都將被課稅,故有稱之為「汽水稅」。
依據費城財政局預估,汽水稅將使市府稅收增加9,100萬美元,預計運用在學前托兒班,學校,圖書館,娛樂中心,及其他公共場所,稅收也將資助抵免販售健康飲品企業的稅收。市長 Jim Kenny 也公開支持這項稅收,並在法案通過後表示這項稅收對於該市的社區及教育系統將會帶來歷史性的貢獻。
根據費城市新聞網(Philly.com)於16日報導:「這項稅收的徵收對象為飲料經銷商,目前尚無法統計將有多少稅收能回饋給消費者,但是估計12盎司的飲料約徵收18美分,2公升的飲料約徵收1美元,以及12瓶裝的飲料約徵收2.16美元。」。為此,飲料業者表達激烈的反對,並在法案通過後發表聲明表示將採取法律行動,並表示此項稅收並未考慮到低收入戶以及消費者對於無熱量飲料的選擇,所以是不公平的。而且這項稅收不僅影響費城人,對於所有美國人來說具有歧視性且極不受到歡迎。儘管美國飲料協會耗費了大筆的廣告費用來阻擋這項稅法的通過,費城市議會最後仍通過這項法案。
類似法案早在2014年,加州柏克萊市就已通過。只是,費城成為全美第一個針對含糖飲料課稅的大城市,其造成之影響較為顯著,目的在於減少含糖飲料的消費。至於其他城市,包括San Francisco(舊金山) 和 Boulder, Colo.(科羅拉多波德),正在考慮相似的立法,不過至今尚未通過。
奈米材質之特性雖有助於開發新穎產品,但對於環境與人體健康是否會造成危害,迄今仍未有定見;為避免奈米科技毫無節制地發展,2008年9月以降,美國環保署(Environmental Protection Agency,EPA)以毒性物質管制法(Toxic Substances Control Act,TSCA)管理奈米材料,並在10月底考慮將奈米碳管納入前述法規中;11月初,更進一步依據毒性物質管制法5(a)(2)發布「顯著新種使用規則(Significant New Use Rule,SNUR)」,將以矽氧烷(siloxane)所改造之奈米矽微粒(silica nanoparticles)與奈米鋁微粒(alumina nanoparticles)列入管理範圍內。 一般而言,化學物質如未列於由EPA所公佈之「化學物質目錄」者,皆應向環保署提出製造前通知(Premanufacture Notice,PMN);而顯著新種使用規則以指定特殊新種化學物質的方式,配合適用製造前通知制度,要求業界針對製造、加工、銷售與使用等過程,提出具體因應措施。申言之,關於前述兩項奈米物質,一旦涉及有別於以往的重大創新製造活動,業者即應於正式進行製造前之90天先行通報環保署,再由其評估該業者是否符合相關條件要求,否則得予以禁止或限制之。 根據環保署既有之測試資料,可以確認奈米微粒得由呼吸與皮膚接觸等方式進入人體。以矽氧烷所改造之奈米矽及奈米鋁,泰半係作為添加劑之用;然而,觀察過往製造前通知所登載之內容,該兩項化學物質無論在呼吸或皮膚接觸所造成之暴露程度尚屬輕微;因此,針對該等奈米材料而向環保署所為之通報流程及審查作業,可能會對於業者後續之生產製造活動形成不確定的阻礙。 有鑒於奈米材料可能對人體健康產生未知風險,為保障奈米工作環境中人員的安全,顯著新種使用規則將於2009年1月起正式生效,作為管理特殊化學物質的監督方式。對於製造或使用奈米材料所可能引發之風險,美國環保署正著眼於環境、健康與安全議題,逐漸採取較為謹慎的政策設計方向,以維護大眾利益。
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。 2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。 卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。 雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。
美國聯邦地方法院就Sanford Wallace散佈間諜軟體案作成判決美國聯邦交易委員會指控 Sanford Wallace 氏及其所經營的 Smartbot.Net 公司,利用 IE 瀏覽器的安全漏洞散佈間諜軟體一案,日前新罕布夏州聯邦地方法院作成判決。 被告散佈之軟體會將受害者的光碟機托盤彈出,同時在螢幕顯示「最後警告」等字樣,附帶一則訊息告訴受害者,「如果您面臨光碟機托盤彈出的狀況,代表間諜軟體已經入侵您的電腦系統,安全已經出現漏洞,敬請立刻下載本公司出品,以資因應!」趁機推銷該公司出品,定價 30 美元之 Spy Wiper 跟 Spy Deleter 軟體,號稱足以因應間諜軟體相關問題。實際上,被告未經用戶同意逕予散佈植入的,性質上即係間諜軟體,不僅會偷偷更改用戶電腦的設定,持續不斷跳出廣告視窗,造成用戶之電腦運作不順或者當機,還可能洩漏電腦裡頭所儲存的資料。 日前新罕布夏州聯邦地方法院就本件作成判決,命被告必須償還不法取得的利益,共計 408 萬餘美元;不得繼續傳輸散佈間諜軟體至用戶之個人電腦;不得未經同意逕行傳輸任何軟體予用戶;不得將用戶之電腦導向彼等並未打算瀏覽或連結的網站或伺服器;不得更動用戶瀏覽器所預設的首頁;不得更動或調整搜尋引擎的功能或成果。
歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。