企業實證特例制度規定於日本產業競爭力強化法第8條、第10條、第14條及第15條,在企業或任何事業團體有進行新事業活動(引進新商品或服務之開發或生產、新商品或服務之導入)之需要時,若現行法規上有滯礙難行之處,則可提出創設新規制措施之申請,藉以排除某些法令之限制,使新事業活動得以進行。
企業實證特例制度分為兩階段,首先由欲實施新事業活動者向事業主管機關提出申請,而事業主管機關將會與法規主管機關討論後,在安全性得到確保之情形下,由事業主管機關同意創設新規制措施。第二階段則需提出新事業活動計畫申請核准,經核准後便得在一定期間內於一定地區進行新事業活動。
新事業活動計畫備核准後,事業團體得進行新事業之活動,其需於各事業年度終了後3個月內向事業主管機關提出報告,就新事業活動之進行情形(包含新事業活動目標達成程度、新特例措施施形狀況、法規所要求之安全性目的之確保措施…等事項)為報告。法規主管機關亦會綜合新事業活動之施形狀況、國外相關法制情形以及技術進步等等情形,決定是否進行修法。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會(European Commission)於2022年3月30日提出了一項「目標地球倡議(the Destination Earth initiative)」,希望建立「目標地球系統」(Destination Earth system,以下簡稱DestinE系統),作為實踐歐洲「綠色協議」(European Green Deal)、「數位化戰略」(EU’s Digital Strategy)此兩項計畫的一部分。 DestinE系統係旨在全球範圍內開發一個高度精確的地球數位模型,透過整合、存取具價值性的資料與人工智慧進行資料分析等技術,以監測、建模和預測環境變化、自然災害和人類社會經濟之影響,以及後續可能的因應和緩解策略。未來希望將高品質的資訊、數位服務、模型預測提供予公部門運用,接著逐步開放給科學界、私部門、公眾等用戶,將有助於應對氣候變遷、實現綠色數位轉型,並支持塑造歐洲的數位未來。 為實現此一項目,歐盟執委會預計在2024年中前由數位歐洲計畫(Digital Europe Programme)投入1.5億歐元,並與科學、工業領域單位合作,包含歐洲航太總署(European Space Agency, ESA)、中期天氣預報中心(European Centre for Medium-Range Weather Forecasts , ECMWF)、氣象衛星開發組織(European Organisation for the Exploitation of Meteorological Satellites , EUMETSAT)等,透過建立核心平台逐步發展為DestinE系統,稱之為數位分身(Digital Twins)。 是以,DestinE系統將允許用戶存取地圖資訊(thematic information)、服務、模型、場景、模擬、預測、視覺化,其系統主要組成分為以下三者: 從而,DestinE系統用戶將能夠存取大量地球系統和社會經濟資料並與之互動,該系統可有助於: 核心服務平台(Core Service Platform)--該平台將基於開放、靈活和安全的雲端運算系統,提供決策工具、應用程式和服務,兼具大規模資料分析與地球系統監測、模擬和預測能力的數位建模和開放模擬平台。同時,也將為DestinE用戶提供專屬資源、整合數據、開發各自的應用程式。該平台服務的採購、相關維運將由歐洲航太總署負責。 DestinE資料湖泊( DestinE Data Lake)--資料湖泊將提供核心服務平台、數位分身所需的獨立專用資料存取空間,並提供多元的資料來源和有效管理與DestinE系統用戶共享的資料,同時提高、擴大資料處理和服務。其將由歐洲氣象衛星開發組織負責營運。 數位分身(Digital Twins)-- DestinE 數位分身將依據不同的地球科學領域主題進行即時觀測、分類,例如極端自然災害事件、因應氣候變遷、海洋或生物多樣性,最終目標是整合這些數位複製內容(digital replicas),形成、建立全面性的地球數位分身綜合系統。因此,DestinE 數位分身將為用戶提供量身打造的高品質資料,用於用戶特定的場景模擬開發、決策。而該DestinE 數位分身將由歐洲中期天氣預報中心進行開發。 從而,DestinE系統用戶將能夠存取大量地球系統和社會經濟資料並與之互動,該系統可有助於: 根據豐富的觀測資料集,對地球系統進行準確、和動態的模擬,例如:關注與社會相關的領域、氣候變化的區域影響、自然災害、海洋生態系統或城市空間。 提高、加強預測能力並發揮最大化影響,例如:保護生物多樣性、管理水資源、可再生能源和糧食資源,以及減輕災害風險。 支持歐盟相關政策的制定和實施,例如:監測和模擬地球發展(陸地、海洋、大氣、生物圈)與人為干預,藉以評估現有環境政策和立法措施的影響,作為制定未來政策的依據。或預測環境災難、衍生的的社會經濟危機,以挽救生命並避免大規模經濟衰退。抑或透過開發和測試場景,實現永續發展。
人工智慧採購指南草案人工智慧作為一前瞻性技術,運用於公部門,可以降低成本、提高管理品質、節省基層公務人員時間,整體改善政府公共服務。然而AI技術進化以及市場發展過於快速,現有採購類型沒有可以直接適用AI採購的判斷標準範本。因此,英國人工智慧辦公室(Office for Artificial Intelligence)與產官學研各界進行研商後,於2019年9月20日發表人工智慧採購指南草案(Draft Guidelines for AI procurement),作為公部門採購AI產品與服務之準則。該指南旨在加強公部門採購人員能力、協助採購人員評估供應商,讓廠商可以隨之調整其產品和服務內容。 該指南提供採購人員規劃政府AI採購的方向,包含招標、公告、評選、決標到履約。但指南強調無法解決採購AI產品與服務時遇到的所有挑戰。 指南內容簡述如下: 在制定規範時應重視如何清楚闡述面臨到的問題,而非只是說明解決方案; 評估AI帶來的風險時應緊扣公共利益,在招標階段敘明以公共利益為核心,並有可能在招標、評選和決標階段變動評估標準; 在招標文件中確實引用法規和AI相關實務守則; 其他包含將AI產品的生命週期納入招標和履約考慮、為提供AI產品和服務的廠商創造公平競爭環境、需與跨領域的團隊進行採購討論、確保採購流程從一開始就建立資料管理機制等。
英國政府公布「英國醫療器材監管的未來」公眾諮詢結果並確立未來監管方向英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2022年6月22日公布「英國醫療器材監管的未來之公眾諮詢政府回應」(Government response to consultation on the future regulation of medical devices in the United Kingdom),確立未來醫材監管方向。本次諮詢收到將盡900件回應(民眾與業者大約各半),結果顯示民眾業者對於強化醫療器材安全監管的支持。 MHRA將強化MHRA的執法權力,以確保病患安全,並且關注健康不平等議題並減少AI偏見問題;其監管設計上會考量歐盟和全球標準,並致力於建立英國符合性評鑑(UK Conformity Assessed, UKCA)。MHRA於安全方面,將增加製造商、進口商與經銷商的責任,並要求有英國地址的負責人對瑕疵商品負擔法律責任(構成法律責任的要件與製造商同)。其亦將要求製造商賠償被不良事件影響的人、禁止行銷上使用引人錯誤之表示、導入醫材之單一識別碼(Unique Device Identifiers, UDI)與增加註冊所需提供之資料,且製造商須建置上市後不良反應監測系統並回報統計上顯著的不良事件趨勢。創新方面,MHRA欲增設「創新醫療器材上市管道」和「軟體醫材上市管道」,以顧及創新與軟體醫材特殊需求。針對一般軟體醫材(software as a medical device, SaMD)與人工智慧軟體醫材(AI as a medical device, AIaMD)的監管,MHRA僅欲於法規中增加「軟體」的定義,其他規範將由指引的形式公布。此外,其將AIaMD視為SaMD的一種,並不會額外訂定AIaMD相關規範。
日本公布資料管理框架,促進資料加值應用日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。 工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。 工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。