何謂「氣味商標」?

  商標權之意義本在於增進商品及服務的識別程度,促進消費者對特定品牌商品或服務的購買慾望,而商標權之立法目的在於維護市場公平競爭,促進工商企業正常發展;是以在社會快速變遷發展之下,各國亦逐漸開放商標之型態,從傳統之文字、圖型,乃至於聲音商標,發展至動態圖、全像圖,以及氣味商標等等。

  以氣味申請商標之案例始於1990年美國的櫻桃香味機油(CHERRY SCENT, Registration)案;歐盟則是在1993年通過歐盟商標規則(European Community Trademark Regulation, CMTR)之後,方開放以氣味聲請為歐盟商標;歐盟成員國以英國為例,則是於1994年修正商標法(Trade-marks Act),接軌CMTR之規範後,於1996年首次通過玫瑰花香輪胎與啤酒味飛鏢遊戲之商標申請。

  我國則是於2011年6月修正通過之商標法中,開放任何足以識別商品、服務來源之標示,皆可註冊商標,其中即包括氣味在內。至今(2016年8月)已有4項氣味商標取得商標權。

  此外,於美國主導之國際經貿協定:環太平洋夥伴協定 (Trans-Pacific Partnership, TPP)中,亦要求其各締約方應盡最大努力接受氣味商標之註冊。是以可知,開放氣味型態之商標註冊已為國際趨勢,可以預期未來將會有更多國家開放氣味商標之註冊申請。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「氣味商標」? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7588&no=55&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
綠色商標之挑戰—歐盟智慧財產權局發布綠色歐盟商標報告

2023年7月歐洲創新理事會和中小企業執行機構(European Innovation Council and SMEs Executive Agency , EISMEA)撰文重申綠色商標的重要性與挑戰。隨著環境議題於國際上的重要性日益增加,綠色商標(Green trademarks)成為一個新興議題。許多敏銳的品牌於意識到多數消費者在消費選擇上更注重環保要素時,即開始開發環保相關商品或服務,並透過「綠色」相關之文字、圖像(Images)或標語(Slogans)等進行「綠色商標」布局,向消費者傳達品牌在環保、永續的投入,例如:商品為有機、對地球有益的,或可促進回收利用的等資訊。根據歐盟智慧財產權局(EUIPO)於2023年2月發布最新版之綠色歐盟商標報告(Green EU trade marks–2022 update)的統計資料顯示,綠色商標占總體商標申請的比例穩定上升中,從1996年的4%提升到2021年的12%,可以看出品牌對於綠色商標愈來愈重視。 該報告將綠色產品的商標分別九大類別。其中,能源生產和節能,合計占綠色商標申請的48%以上,污染控制占18%,交通占11%。品牌企業應確保於正確商品或服務類別進行綠色商標布局。除商品或服務註冊類別外,企業於商標註冊前之綠色品牌命名階段,應避免品牌名稱不具商標法要求的識別性,導致被智慧財產局駁回或撤銷商標註冊之風險,例如:以誤導性或純粹描述性(misleading or purely descriptive)的方式使用「生態(Eco)」或「綠色(Green)」等用語(terms)。建議綠色品牌命名應確保避免單純放入該些描述環保特性的用語,而必須考量商標法要求的識別性,能夠使相關消費者能識別綠色商品或服務來源,並得與他人的商品或服務相區別。 綜上所述,隨著近年企業推出綠色品牌、商品或服務,採用環保相關文字或標語作為綠色品牌名稱的情況逐漸增加,這也為商標申請人帶來挑戰。環保意識提升的消費者,對於這些環保相關用語的理解變得更加成熟,品牌商標更容易被認定為單純描述性的用詞(可能符合中華民國商標法第29條第一項不得註冊事由),商標申請人對於品牌商標獨特性的證明上將更加困難。因此,建議品牌擁有者應在商標註冊前之品牌命名階段,更發揮創意、注重商標法「具識別性」之註冊要件,避免品牌命名僅單純向消費者描述環保特色資訊,導致無法取得註冊商標,難以彰顯綠色品牌特色之後果。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

加拿大公布新的企業個資保護自評工具

  加拿大聯邦政府與亞伯達省(Alberta)及英屬哥倫比亞省(British Columbia)的隱私委員會針對一般企業,聯合推出新的個人資料保護自我評量線上工具,該線上工具之內容包括風險管理、政策、記錄管理、人力資源安全、物理安全、系統安全、網路安全、無線、資料庫安全、作業系統、電子郵件和傳真安全、資料完整性和保護、存取控制、信息系統獲取,開發和維護、事件管理、業務連續性規劃、承諾等項目之評估測驗。   聯合制定該線上自我評量工具的隱私委員辦公室表示,該線上工具可用於任何私人組織,特別是小型及中小型企業,而且新的線上工具是針對企業為一全面性的評估,並且該評估的內容十分鉅細靡遺。另外,為了提供使用者於使用該線上工具時的靈活性,故使用者亦可以將重點放在最切合自己的企業的部分,亦即僅選擇其中一項或數項為自我評估的內容即可。   又,該線上自我評量工具會將使用者的自我評估和分析過程的結果做成結論,而使用者可以獲得該分析得出之結論,並將作成之結論用來有系統地為評估組織本身的個人資料保護安全性,並藉以提高個人資料保護的安全。

中國大陸於最高人民法院內新設立知識產權法庭

  近期美國與中國大陸雙方針對貿易問題展開激烈攻防,起因為美國冀望透過「貿易戰」扭轉中美龐大的貿易逆差,而其中一個主要爭議點即為中國大陸日趨嚴重之侵權仿冒等問題。   中國大陸於第十三屆全國人大常委會表決通過最高人民法院提請審議的《關於專利等案件訴訟程式若干問題的決定》,批准最高人民法院設立知識產權法庭,主要審理專利等專業技術性較強的知識產權民事及行政上訴案件,以達成知識產權案件審理專門、集中及人員專業化之目的,提供更為專業之司法服務及保障。由最高人民法院知識產權法庭統一審理發明和實用新型專利為主之上訴案件,有利於對中外企業知識產權之保護,實現知識產權效力判斷與侵權判斷兩大訴訟程式和裁判標準的對接,以利解決機制上之裁判尺度不一問題,提高知識產權審判品質效率,提升司法公信力。   值得注意的是,最高人民法院知識產權法庭審理之案件,僅以不服知識產權一審判決、裁定中發明和實用新型專利等案件,其他上訴案件,仍由智慧財產權法院所在地的高級人民法院審理。中國大陸最高人民法院院長周強表示,知識產權法庭之設立,宣示平等保護中外市場主體知識產權,該知識產權法庭並不會處理與不正當競爭、商標或營業秘密有關之案件。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP