雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。
雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。
「雲端運算」供應模式以及實用定義如下:
‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。
‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。
‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。
雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。
本文為「經濟部產業技術司科技專案成果」
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
美國OMB發布M-26-04備忘錄,確立聯邦採購之「無偏見原則」與透明度義務美國白宮管理與預算辦公室(Office of Management and Budget,以下簡稱OMB)在2025年12月11日發布M-26-04備忘錄(以下簡稱本指引),目標是落實第14319號行政命令「防止聯邦政府中的覺醒AI」(Preventing Woke AI in the Federal Government)。本指引闡述「追求真相」(Truth-seeking)、「意識型態中立」(Ideological Neutrality)兩大「無偏見AI原則」(Unbiased AI Principles),並強制要求聯邦機構在採購大型語言模型(LLM)時,必須將此二原則納入合約條款。 為確保符合規定,本指引要求聯邦機構在進行採購時,應避免強制供應商揭露過於敏感的技術資料(如模型權重),而是採取以下兩層級的資訊揭露架構: 1. 基本透明度要求(Minimum Threshold for LLM Transparency) 各機構於招標階段,應要求供應商提供以下資訊: (1) 可接受的使用政策:界定產品適當與不適當用途的文件。 (2) 模型、系統和/或資料的摘要卡(Model, System, and/or Data Cards):包含訓練摘要、風險緩解措施及基準測試評分。 (3) 終端用戶資源與意見回饋機制:包含用戶教程及針對違反無偏見原則產出的回報管道。 2. 強化透明度門檻(Threshold for Enhanced LLM Transparency) 若機構擬將模型整合至其他軟體或服務中,則需獲取更深入的開發與運作資訊,例如: 1. 預訓練和後訓練(Pre-Training and Post-Training):如影響產出事實性(factuality)的活動、系統提示詞(System Prompts)、以及內容審查過濾器的具體運作。 2. 模型評估:針對政治議題的偏見測試結果與方法論。 3. 模型中嵌入的企業控制(Enterprise-Level Controls): 如可客製化的系統指令或來源引用功能。 4. 第三方對模型的修改:非原廠開發者所施加的額外控制層。 本指引對聯邦行政機構具有行政拘束力。機構必須於2026年3月11日前更新採購政策,並將上述要求納入新舊合約中。值得注意的是,本指引引入了「實質性要求」(Materiality Requirement),即若供應商拒絕針對違反無偏見原則的產出採取糾正措施,將構成合約違約之重要事由,機構得據此終止合約。 觀察美國OMB此次發布的內容,係透過將「意識形態中立」轉化為具體的採購合規要件,OMB利用聯邦政府龐大的購買力,在採購合約中確立供應商的「透明度義務」,OMB指引不僅建立了明確的法遵標竿,更可能發揮示範效應,將政府端的無偏見規範逐步推廣至私營部門,轉化為產業的最佳實踐標準。
美國發明法(Leahy-Smith America Invents Act,AIA)第18條修正案之觀察美國國會於今年5月針對美國發明法(Leahy-Smith America Invents Act,AIA)第18條提出擴張性修法。美國發明法第18條係規範專利改革過渡期間涵蓋商業方法專利之複審程序(Transition Program for Cover Business Method Patents Review, CBM),並且定有落日條款,預計將在2020年9月16日失效。本次修正案研擬將落日條款刪除以外,將適用對象從原先適用於金融產品或服務(a financial product or service)之商業方法專利(Business Method Patents)修正為適用於企業、商品或服務(used in the practice, administration, or management of enterprise、product or service)之商業方法專利,此將擴張商業方法專利複審程序之適用範圍。 奇異電子(GE Co.)、3M(3M Co.)、禮來(Lilly & Co.)、施樂(Xerox Corp.)等多家產業界知名公司於今年(2013)9月19日發出聯合信函反對美國國會此次針對美國發明法第18條的擴張性修法。信中表示本次修法將意味著數據處理專利(Data Processing Patents)等尖端的癌症治療方法到汽車安全系統等都可能包含在內,可提起專利侵權的範圍將擴大至難以界定的程度,再者刪除落日條款,會造成諸多不確定性與風險阻礙科技創新的持續投入。 然而,產業界並非意見一致,諸如谷歌(Google Inc.)、臉書(Facebook Inc.)、沃爾瑪(Wal-Mart Stores Inc.)等知名公司則立場相左,早於今年7月即率先表示贊成,聲明此次修法提供創新者一個積極保護自身專利的具體手段。由此足見歐巴馬政府與立法者在專利法制改革中,必然要面對難以預測的產業效應和衝擊,從而增加其制度改革策略思考和制度設計的難度。
德國提出「新冠肺炎及新型冠狀病毒預防接種法」草案,以利疫苗分配之政策規劃及法制基礎德國聯邦健康部(Bundesministerium für Gesundheit, BMG)於2020年12月15日提出「新冠肺炎及新型冠狀病毒預防接種法」(Gesetzes zur Priorisierung bei der Schutzimpfung gegen das Corona-virus SARS-CoV-2, Coronavirus-Impfgesetz)草案,現進入聯邦參議院審議階段。該草案之立法目的在於,確認新冠肺炎及新型冠狀病毒(Coronavirus SARS-CoV-2)疫苗分配的公平性,並藉此降低嚴重疾病與死亡人數。 原則上凡屬於法定健康保險的被保險人,或於德意志聯邦共和國內有住所或長期居留者,得依據新冠肺炎及新型冠狀病毒預防接種法規定,具有接種新冠肺炎及新型冠狀病毒疫苗之權利。然而,由於疫苗的分配涉及基本法第2條第2項第1句生命及身體安全的基本權利(Grundrecht auf Leben und körperliche Unversehrtheit),以及衡酌疫苗資源的有限性問題,該法第3條依據風險群體(Risikogruppen)及適應症群體(Indikationsgruppen)共區分六級的接種優先順序,如違反接種優先順序者,將可能面臨最高三萬元的罰鍰,意圖營利者則將可能面臨一年至五年的有期徒刑。