雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。
雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。
「雲端運算」供應模式以及實用定義如下:
‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。
‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。
‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。
雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。
本文為「經濟部產業技術司科技專案成果」
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。
簡介美國《營業秘密案件管理的司法指引》2023年7月13日,美國聯邦司法中心(Federal Judicial Center)發布《營業秘密案件管理的司法指引》(Trade Secret Case Management Judicial Guide)。該指引是由美國聯邦司法中心與Berkeley大學合作出版,旨在提供處理聯邦營業秘密訴訟的法官參考,並為訴訟當事人提供營業秘密案件各階段的注意事項。其中特別指出識別營業秘密及證據開示在訴訟中的重要性。 1.在識別營業秘密的部分 《營業秘密案件管理的司法指引》指出在訴訟中,識別應達到「足以與已公開的資訊進行比較」的程度。而識別程度應具備以下兩個要件,包括: (1)使被告了解原告所主張之營業秘密範圍; (2)使被告能確定證據開示項目與本案所涉及之營業秘密間的關聯性。 據此,若原告僅識別其所主張之營業秘密的類別不足以識別其營業秘密。為達到《營業秘密案件管理的司法指南》所要求之識別程度,企業應盤點其擁有的營業秘密並留存產出紀錄,以利後續訴訟中能具體識別其營業秘密。 2.在證據開示的部分 《營業秘密案件管理的司法指引》指出證據開示的範圍會受到不同因素影響,比如各類型的特殊紀錄、個人隱私權是否受到保護等。為了能在證據開示階段取得優勢,企業應與員工簽署協議,明確約定其於機密資訊有外洩之虞時,有權對員工之個人設備等進行調查。 由上述內容可以發現,若要在美國營業秘密案件中取得優勢,建議企業採取識別所擁有的營業秘密、保存產出紀錄、與員工簽署相關協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國技術移轉政府辦公室發布2023至2024年之年度施政報告英國技術移轉政府辦公室(Government Office for Technology Transfer, GOTT)於2022年4月成立,主要解決公部門研發成果,即「知識資產」(knowledge assets, KA),因面臨運用不足及管理等困境,並積極推動公部門衍生新創政策,促進KA產業化。 GOTT會依研發法人的需求及經驗程度,提供個別支援性服務,如協助較無KA運用經驗之法人設置KA運用工作規則及管理方式等直接技術性指導,亦提供較有KA運用經驗之法人額外投資資金及其他資源挹注。 GOTT於2024年7月5日發布過去一年(2023年4月1日至2024年3月31日)之施政報告,主要重點簡述如下: (1)對「玫瑰書」(the Rose Book),即政府KA管理指引,提出細部操作指引,如:「PSB內KA管理負責人角色任命指引」、「協助PSB制定KA管理策略指引」、「智慧財產權及其機密性指引」、「附件A–知識資產類別與類型」、「附件B–KA評估工具」、「附件C–商業化路線」、「附件D–獲取KA指引」、「附件E–人才流動指引」以及「申請KA補助基金指引」等。 (2)推出首個政府對公部門創新研發之市場驗證加速器計劃,稱為「公共研究創新和市場加速器」(the Public Research Innovation and Market Accelerator, PRIMA),協助公部門創新者測試其研發構想、產品及服務是否有市場發展潛力。 (3)發布「公部門衍生新創公司研究」(Public Sector Spinouts Study),為英國政府首次對公部門推動衍生新創政策及制度進行審查,顯示英國推動上遇有許多推動障礙,研究最後對英國政府及GOTT提供多項施政建議。
OECD啟動全球首創的《開發先進人工智慧系統組織的報告框架》2025年2月7日,經濟合作暨發展組織(Organization for Economic Cooperation and Development,OECD)正式啟動《開發先進人工智慧系統組織的報告框架》(Reporting Framework for the Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI Systems,簡稱G7AI風險報告框架)。 該框架之目的是具體落實《廣島進程國際行為準則》(Hiroshima Process International Code of Conduct)的11項行動,促進開發先進人工智慧系統(Advanced AI Systems)的組織建立透明度和問責制。該框架為組織提供標準化方法,使其能夠證明自身符合《廣島進程國際行為準則》的行動,並首次讓組織可以提供有關其人工智慧風險管理實踐、風險評估、事件報告等資訊。對於從事先進人工智慧開發的企業與組織而言,該框架將成為未來風險管理、透明度揭露與國際合規的重要依據。 G7 AI風險報告框架設計,對應《廣島進程國際行為準則》的11項行動,提出七個核心關注面向,具體說明組織於AI系統開發、部署與治理過程中應採取之措施: 1. 組織如何進行AI風險識別與評估; 2. 組織如何進行AI風險管理與資訊安全; 3. 組織如何進行先進AI系統的透明度報告; 4. 組織如何將AI風險管理納入治理框架; 5. 組織如何進行內容驗證與來源追溯機制; 6. 組織如何投資、研究AI安全與如何降低AI社會風險; 7. 組織如何促進AI對人類與全球的利益。 為協助G7推動《廣島進程國際行為準則》,OECD建構G7「AI風險報告框架」網路平台,鼓勵開發先進人工智慧的組織與企業於2025年4月15日前提交首份人工智慧風險報告至該平台(https://transparency.oecd.ai/),目前已有包含OpenAI等超過15家國際企業提交報告。OECD亦呼籲企業與組織每年定期更新報告,以提升全球利益相關者之間的透明度與合作。 目前雖屬自願性報告,然考量到國際監理機關對生成式AI及高風險AI 系統透明度、可問責性(Accountability)的日益關注,G7 AI風險報告框架內容可能成為未來立法與監管的參考作法之一。建議企業組織持續觀測國際AI治理政策變化,預做合規準備。