雲端運算所涉法律議題

  雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。

  雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。

「雲端運算」供應模式以及實用定義如下:

‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。

‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。

‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。

  雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 雲端運算所涉法律議題, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7600&no=67&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

日本為防堵黃牛票6月正式施行票券不當轉賣禁止法

  日本在2019年6月14日正式施行「確保表演入場券流通正當性之禁止不當轉賣特定表演入場券相關法律」(特定興行入場券の不正転売の禁止等による興行入場券の適正な流通の確保に関する法律),簡稱票券不當轉賣禁止法(チケット不正転売禁止法),其以訂立專法之方式,來防止黃牛業者先大量取得票券,再以賺取高額差價之方式牟利。其重點包括: 禁止行為:(1)不當轉賣票券;(2)以不當轉賣為目的而讓售票券。 適用範圍:在日本國內所舉行,且得為不特定多數人得共聞共見之電影、歌劇、舞台劇、音樂、舞蹈及其他藝術或體育活動。 票券應記載事項: (1)發行人在販售時明確表示,禁止未經發行人同意而進行買賣轉讓,並應將禁止事項記載於票券上;(2)舉行表演之時間、地點及具入場資格者之指定座位;(3)發行人在販售時,需採取確認入場者或購票者之姓名和聯繫方式等必要措施,並應將確認事項記載於票券上。 不當轉賣定義:以有償轉賣未得票券發行人事前同意轉讓之票券為業,並以超過售價之價格進行販賣。   日本政府並針對2019年9月份在日本所舉辦之橄欖球世界杯及2020年在東京所舉辦之奧運會加強宣導該法令。我國熱門活動、演唱會也常面臨黃牛掃票,再高額轉售之問題。日本之立法模式,不失為我國參考借鏡之對象。

美國通過《地理空間資料法》,明確化地理空間資料管理

  美國於2018年10月5日,通過《2018年地理空間資料法》(Geospatial Data Act of 2018,下稱《GDA 2018》),並編列入《2018年美國聯邦航空總署重新授權法案》(Federal Aviation Administration Reauthorization Act of 2018)。該法是接續《2017年地理空間資料法》(Geospatial Data Act of 2017,下稱《GDA 2017》),做出進一步的調整。   《GDA 2017》的核心目標就是要根本性地重整管轄權,以順利發展「國家空間資料基礎建設」(National Spatial Data Infrastructure)。要點如下: 原先美國有許多管轄的地理空間資料旁枝機構,工作重疊性高、權責不清,《GDA 2017》指定「聯邦地理空間資料委員會」(Federal Geographic Data Committee, FGDC)作為權責機關,並管理國家空間資料資產(National Geospatial Data Asset)。 指定「國家地理空間資料諮詢委員會」(National Geospatial Advisory Committee, NGAC),提供FGDC建議並進行監督。 擴充「地理空間資料」的定義,把所有量測(Survey)和製圖(Mapping)成果解釋成地理空間資料(Geospatial Data)。   《GDA 2018》進一步提出規範,明確化地理空間資料管理: 回饋報告 要求執行與地理空間相關計畫的聯邦單位,提供年度報告;並要求聯邦地理空間資料委員會(FGDC)按《GDA 2017》所列的職責,對於所有相關單位進行評估報告。這些評估報告會提交給國家地理空間資料諮詢委員會(NGAC)寫成報告,在兩年內提供給國會。 國家空間資料基礎建設 明確設立兩個目標:第一個目標是地理空間資料的隱私管理和安全性保障;第二個目標則是建置全球空間資料基礎建設。 國家空間資料資產 希望FGDC會能夠就各個主題指定專責機構進行管理。

談服務貿易總協定下我國服務業研發補貼措施之國民待遇問題

TOP