德國聯邦政府公布2016年《研究與創新成果報告》

  德國聯邦教育及研究部於6月1日公布《2016年德國研究與創新報告》(簡稱為BUFI) ,由聯邦教育及研究部部長Johanna Wanka 公布,這份報告每兩年由德國聯邦教育與研究部製作一次,作為2016年的趨勢展望。以下為報告中幾項重點:

  德國政府在研發的支出創下歷史新高,在最新統計數據中,就2014年已有近840億歐元投入研究和發展領域,在歐洲位居首位。另外,德國聯邦政府在產業界投入570億歐元,占德國研發總預算約三分之二,已創下歷史新高。而2015年對產業界投入的研發支出又比前一年成長6.4%。而德國勞動總人口約434萬,目前統計從事研發活動的人口約60萬人,首次創下勞動人口比例歷史新紀錄。在歐盟國家中德國本已位於領先地位,在世界競爭力指數(WCI)排名中,德國更是遙遙領先其他國家,在140個國家中排名第六。德國的研究成果亦獲得國際間的肯定,德國在學術界的地位在最近一年持續領先。在德國關於德國科學家的著作,是躋身全球最常被引用的出版物的前十分之一。德國的專利申請數量在世界上排名領先,平均註冊專利數量從2003-2013年成長約9%,在歐盟遙遙領先其他成員國,在世界上專利數量則是美國的兩倍。

  德國同時是研發產品輸出為主的國家,特別是在高科技產品輸出方面,即使中國如今名列前茅,德國依舊占據前排位置。在歐盟國家中,德國則位居第一。聯邦政府將研究與創新為財政編列預算優先事項,聯邦政府持續增加研發支出,根據目前2016年的總預算中,針對研發編列了1兆5800億歐元。聯邦政府補助德國在未來重點新興領域的研發及加強中小企業創新能力。聯邦政府在高科技戰略中所列的各大議題氣候變化與能源、健康與營養、移動、安全與通訊都將予以補助。又2015年政府已針對中小企業投資了1兆4500億歐元。各邦政府在研發支出亦占各邦年度總預算比例高達40%,由此可看出德國政府對創新與研發的重視。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國聯邦政府公布2016年《研究與創新成果報告》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7604&no=55&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
加拿大決定將網路中立規範適用至行動無線網路

  加拿大廣播電視及電信委員會(Canadian Radio-Television and Telecommunications Commission,CRTC)於2009年10月之Telecom Regulatory Policy CRTC 2009-657中,公佈網路流量管理架構(Internet Traffic Management Pratices,ITMPs)之決定,作為管理ISP業者進行差別待遇之依據。該管理架構是加拿大維護網路中立性原則的實踐。   當時CRTC並未決定該架構是否一併適用於行動無線網路,直至2010年7月CRTC發布Telecom Decision CRTC 2010-445,決定將該規則一併適用於行動無線網路,以解決潛在的差別待遇行為發生於行動無線資料服務。   根據2009年之管理架構,CRTC宣示了四項管理原則: 1.透明度(Transparency) ISP必須透明揭露他們所使用的ITMPs,使消費者能根據這些資訊決定服務的購買與使用。例如經濟條件的透明,使消費者能夠有符合其支付意願之選擇,使市場機制能夠正常運作。 2.創新(Innovation) 解決網路壅塞最基本的方式是透過對網路之投資,也仍是最主要的解決方案。但依靠投資並不能解決所有的問題,CRTC認為,ISP業者之ITMPs在某些時候,仍需要適當的管理措施介入。業者之ITMPs應針對明確的需求而設計,不可過度。 3.明確(Clarity) ISP業者必須確保他們所使用的ITMPs不會有不合理的歧視,也不會有不合理的優惠。CRTC所建立之ITMP的管理架構,提供一個清晰和結構化的方法,來評估既有與未來的ITMPs是否符合加拿大電信法(Telecommunications Act)第27(2)條規範。 4.競爭中立(Competitive neutrality) 對於零售服務,CRTC將採取事後管制原則,即接受消費者投訴後處理之原則,進行管制評估。而在批發服務部份,則較為嚴格。亦即,當ISP在批發服務使用了比零售服務較多的限制性ITMPs時,必須得到CRTC之批准。當ISP將ITMPs用於批發服務時,必須遵守CRTC之管理架構,不得對次級ISP(Secondary ISP)的流量造成顯著和不相稱的影響。   值CRTC並將採取行動以確保因實施ITMPs而收集之個人資訊,不被洩漏與使用至其他目的。   在本項決定公佈之後,代表加拿大提供接取網際網路的ISP,無論使用何種技術,都將適用同樣的ITMPs管理原則。在Google-Verizon於美國遊說網路中立性應不適用於行動無線網路之時,CRTC之決定可做為不同方向之參考。

摩托羅拉告蘋果專利侵權,手機大廠展開互告混戰

  摩托羅拉旗下子公司Motorola Mobility於10月6日向美國國際貿易委員會(ITC)提訴,指蘋果公司的iPhone, iPad, iTouch 以及一些 Mac電腦侵害其專利,同時Motorola Mobility也在伊利諾州北區和佛州南區的聯邦法院提出告訴。值得一提的是,在對法院提出的告訴中僅僅是 “指稱” 多種蘋果公司的產品如Apple iPhone 3G, Apple iPad等侵害其專利權,像這種沒有提出具體證據的告訴儼然已經成為風氣,似乎違反了最高法院於Bell Atlantic Corp. v. Twombly案中指出必須要提出明確的事證而非僅止於推論(speculation)的要求。   Motorola Mobility提出的3項告訴中共包含18項專利,乃是關於無線通訊技術,例如WCDMA (3G)、GPRS, 802.11、天線設計,以及關鍵的智慧手機技術,包括無線電子郵件、近距感測(proximity sensing)、軟體應用管理等。Motorola 智財部門的副總裁Kirk Dailey表示自蘋果進入通訊市場以來即開始與其長期磋商,但因為蘋果拒絕接受授權所以不得不提出告訴以阻止他們繼續侵權。近來手機市場上專利侵權互告頻繁,摩托羅拉的Android智慧手機日前也遭微軟控告侵權,HTC也與蘋果對簿公堂。Google、蘋果等手機市場的新秀顯然已對摩托羅拉、微軟等老前輩構成競爭壓力,形成手機大廠互相控告侵權的戲碼不斷上演。

人工智慧即服務(AI as a Service, AIaaS)

  人工智慧即服務(AIaaS)之定義為由第三方提供人工智慧(AI)外包服務,其可使個人和公司基於各種目的進行AI相關實驗,同時毋須於初期即大規模投資或承受高度風險。著名之四大AIaaS供應商為Amazon AWS雲端運算服務、Microsoft Azure 雲端運算平台與服務、Google雲服務、以及IBM雲服務。   AIaaS之優點主要有:(1)降低成本:一般公司無須投資軟體、硬體、人員、維護成本以及不同任務之修改成本,AIaaS供應商可供應不同之硬體或機器學習供公司嘗試運用。(2)即用性:AIaaS供應商提供之AI服務為即用性,無須太多專家介入修改即可使用。(3)可擴展性:可由較小之項目開始試驗,逐步擴張調整服務,因此具有戰略靈活性。然而,AIaaS亦有以下潛在缺點:(1)降低安全性:公司必須交付大量資料給AIaaS供應商,因此資料之機密保護與預防竄改即為重要。(2)增加依賴度:若發生問題時,必須等待AIaaS供應商進行處理。(3)降低透明度:由於是即用性之AI服務,對於內部演算法之運作則屬於未知之黑盒子領域。(4)限制創新:因AIaaS供應商所供應之AI服務需一定程度之標準化,因此限制公司創新發展之可能。

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

TOP