歐盟於2016年5月公布將成立個人化醫療國際聯合會(International Consortium for Personalised Medicine, IC PerMed),並草擬發展倡議。其成立背景為目前用來治療大部分病人之一般藥品效果未如預期,且因藥物嚴重副作用導致需急性醫療入院情形,約超過60%之比例。此外,歐盟的醫療照護成本將隨著人口老化以及慢性疾病增加而加重。個人化醫療具有特定預防目的以及治療方法,因此,病人利用最佳的治療方是,可避免試驗與治療錯誤之問題。個人化醫療是一個快速成長的市場,歐洲醫療照護產業具有發展潛力,並同時帶來經濟成長與就業機會。
歐盟認為,儘管個人化醫療尚未有明確定義,但依據Horizon2020諮詢小組(Horizon 2020 Advisory Group)定義為利用個人表現型或基因型特徵之醫療模型,針對正確的個人、治療時間,以明確的醫療政策為目標進行診治,或者是找出疾病特徵給予即時的預防。其中,重要部份在於,個人化關注的不僅是藥品或醫療產品,尚需對於生物機制以及環境與疾病、健康之間的交互作用等進行瞭解是否影響整體的健康照護。雖然歐洲部分國家已經開始引進個人化醫療,但實際上歐洲仍處在早期執行階段,尚待更多的研究開發。
為此,歐盟執委會與部分健康研究機構以及決策組織團體等共同合作,決議成立個人化醫療國際聯合會,目標為2016年底之前開始此項計畫。歐盟執委會與IC PerMed組織成員合作,將進行以下事項:
1.將歐洲建立成為全球個人化醫療研究領導者地位
2.透過合作研究支持個人化醫療醫學
3.將個人化醫療的利益展現於民眾以及醫療照護體制
4.為精準醫療提供給民眾做好準備
IC PerMed將聚焦在研發補助與合作,以實現上述所設定之任務。目前,IC PerMed正研擬發展倡議藍圖。依據草擬之藍圖,IC PerMed將提供各組織成員之間彈性合作架構。藍圖主要建構於個人化醫療歐洲願景(Shaping Europe’s Vision for Personalised Medicine)之相關文件,該文件屬於政策研發議程(Strategic Research and Innovation Agenda, SRIA)之一部分,同時為先前歐盟所補助之PerMed(2013~2015)計畫範圍之一。依據PerMed SRIA,發展可區分為五項領域,包括: 發展過程與結果、整合巨量資料與ICT解決模式、將基礎轉為臨床研究、將研發鏈結市場、以及形成延續性的醫療照護體系。未來,IC PerMed發展倡議藍圖將依上述五個領域建構,並在2016年底預計公布第一部分的施行願景。
聯邦檢察官指出 19 歲的 Curtis Salisbury ,在九月二十六日針對他在密蘇里州的聖路易市盜錄電影,並在網路上散佈等非法行為坦承犯案。 Salisbury 利用工作之便,於下班後使用數位錄影機及錄音器材盜錄兩部電影,進而在網路上散佈而遭到起訴。 Salisbury 因而成為第一位根據 “ 家庭娛樂及著作權法案 ” (Family Entertainment and Copyright Act) 而遭受起訴者。 家庭娛樂及著作權法案在 2005 年四月由國會通過,致力於遏止網路上的著作權侵害行為。法案中規定,運用視聽器材於電影院中盜錄電影者,可以處$ 250,000 罰金及三年以下有期徒刑,若進而在網路上傳播者,則需承擔額外的罰則。 儘管這樣的結果使大多數電影製片業者歡欣鼓舞。然而,如此嚴厲的刑罰具有爭議性,原因在於嚴厲的罰則是為暴力犯罪而設計,若應用於著作權相關議題時,實非一個明智的選擇。
關於軟體產品的智慧財產權保護建議近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。 然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。 綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國擬投入110億美元扶持半導體研發,並成立國家半導體技術中心美國白宮於2024年2月9日宣布從《晶片與科學法》(CHIPS and Science Act)撥款110億美元執行「CHIPS研發計畫」(CHIPS Research and Development (R&D) programs),並將設立投資基金,協助美國新興半導體公司技術商業化發展。 CHIPS研發計畫源係於美國國會於2022年8月通過《晶片與科學法》,提供527億美元的經費支持美國半導體產業,其中390億美元用於補助半導體生產,110億美元用於半導體研發。此次CHIPS研發計畫的具體作法如下: (1)建置國家半導體技術中心(National Semiconductor Technology Center,簡稱NSTC):為CHIPS研發計畫的核心項目,將投資50億美元建置NSTC,協助美國先進半導體研發與設計,確保美國於半導體領域的領先地位。NSTC將向公眾共享設施與專業知識,幫助創新者取得相關專業知識與能力。此外NSTC亦將推動利益團體(Community of Interest),將開放所有利益相關者就NSTC的規劃提供意見。 (2)投資半導體人才(Investing in the Semiconductor Workforce):創建人才勞動卓越中心(Workforce Center of Excellence),以培育、訓練美國半導體產業所需人才,並促進產業界與學術界的合作。 (3)投資其他關鍵領域研發之需求(Investing in Other Key R&D Needs):向美國晶片製造研究所(CHIPS Manufacturing USA Institute)投資至少2億美元,以創建美國首座半導體製造數位孿生研究所(Semiconductor Manufacturing Digital Twin Institute),以降低晶片研發製造的成本,加速創新技術商業化之週期;以及投資3億美元於先進封裝產業,以提升半導體系統之效能。以外亦投資1億美元資助「CHIPS量測計畫」(CHIPS Metrology Program)的29個項目,幫助研發新型測量設備與方法,以滿足為電子產業的技術需求。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。