日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。
研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。
本文為「經濟部產業技術司科技專案成果」
中國大陸國務院法制辦公室前於2015年10月10日在網站上公告,有關其交通運輸部就《網路預約出租汽車經營服務管理暫行辦法(徵求意見稿)》對外徵求意見至同年11月9日止。該暫行辦法係因應利用網路建構服務平台,並提供非傳統之職業駕駛或營業車輛的運輸服務類型,如Uber等。 由前述公開資料觀之,中國大陸預計對Uber或相關業者,只要符合從事網路預約出租汽車經營服務,即納入交通運輸主管部門之管制範圍。且依提供服務類型不同,區分為網路預約出租汽車經營服務(指平台)、及網路預約出租汽車經營者(實際提供服務之業者)二大類,並分別進行管理,如不得提供類似計程車之巡遊載客。 此外,依目前規劃,國務院交通運輸主管部門(指交通運輸部)負責指導全國網路預約出租汽車管理工作,而縣級以上的人民政府,其交通運輸主管部門(如地方交通委員會或交通局)須實施網路預約出租汽車管理。如要求縣級以上之主管機關應建立監管平台及進行監督管理,如定期公開車輛、駕駛人及乘客評價等資訊外,網路預約出租汽車經營服務之平台及相關業者依該暫行辦法規定須取得「道路運輸經營許可證」,而從事該運輸服務所使用之車輛除限7人座以下,並應登記為出租客運、安裝衛星定位及報警裝置等,且須有「道路運輸證」。 另該暫行辦法不適用於對原屬巡遊出租汽車使用電信、互聯網等方式為乘客提供服務,及不以營利為目的之共乘,如通勤或節假日私人小客車合乘等類型。
雲端運算所涉法律議題雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。 雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。 雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。
世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素世界衛生組織發布歐洲區域人工智慧於醫療系統準備情況報告,責任規則為最重要之關鍵政策因素 資訊工業策進會科技法律研究所 2025年12月18日 世界衛生組織(World Health Organization, WHO)於2025年11月19日發布「人工智慧正在重塑醫療系統:世衛組織歐洲區域準備情況報告」(Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region)[1],本報告為2024年至2025年於WHO歐洲區域醫療照護領域人工智慧(AI for health care)調查結果,借鑒50個成員國之經驗,檢視各國之國家戰略、治理模式、法律與倫理框架、勞動力準備、資料治理、利益相關者參與、私部門角色以及AI應用之普及情況,探討各國如何應對AI於醫療系統中之機會與挑戰。其中責任規則(liability rules)之建立,為成員國認為係推動AI於醫療照護領域廣泛應用之最重要關鍵政策因素,因此本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,透過救濟與執法管道以保護病患與醫療系統之權益。 壹、事件摘要 本報告發現調查對象中僅有8%成員國已發布國家級醫療領域特定AI策略(national health-specific AI strategy),顯示此處仍有相當大之缺口需要補足。而就醫療領域AI之法律、政策與指導方針框架方面,46%之成員國已評估於現有法律及政策相對於醫療衛生領域AI系統不足之處;54%之成員國已設立監管機構以評估與核准AI系統;惟僅有8%之成員國已制定醫療領域AI之責任標準(liability standards for AI in health),更僅有6%之成員國就醫療照護領域之生成式AI系統提出法律要求。依此可知,成員國對於AI政策之優先事項通常集中於醫療領域AI系統之採購、開發與使用,而對個人或群體不利影響之重視與責任標準之建立仍然有限。於缺乏明確責任標準之情況下,可能會導致臨床醫師對AI之依賴猶豫不決,或者相反地過度依賴AI,從而增加病患安全風險。 就可信賴AI之醫療資料治理方面(health data governance for trustworthy AI),66%成員國已制定專門之國家醫療資料戰略,76%成員國已建立或正在制定醫療資料治理框架,66%成員國已建立區域或國家級醫療資料中心(health data hub),30%成員國已發布關於醫療資料二次利用之指引(the secondary use of health data),30%成員國已制定規則,促進以研究為目的之跨境共享醫療資料(cross-border sharing of health data for research purposes)。依此,許多成員國已在制定國家醫療資料戰略與建立治理框架方面取得顯著進展,惟資料二次利用與跨境利用等領域仍較遲滯,這些資料問題仍需解決,以避免產生技術先進卻無法完全滿足臨床或公衛需求之工具。 就於醫療照護領域採用AI之障礙,有高達86%之成員國認為,最主要之障礙為法律之不確定性(legal uncertainty),其次之障礙為78%之成員國所認為之財務可負擔性(financial affordability);依此,雖AI之採用具有前景,惟仍受到監管不確定性、倫理挑戰、監管不力與資金障礙之限制;而財務上之資金障礙,包括高昂之基礎設施成本、持續員工培訓、有限之健保給付與先進AI系統訂閱費用皆限制AI之普及,特別於規模較小或資源有限之醫療系統中。 就推動AI於醫療照護領域廣泛應用之關鍵政策因素,有高達92%之成員國認為是責任規則(liability rules),其次有90%之成員國認為是關於透明度、可驗證性與可解釋性之指引。依此,幾乎所有成員國皆認為,明確AI系統製造商、部署者與使用者之責任規則為政策上之關鍵推動因素,且確保AI解決方案之透明度、可驗證性與可解釋性之指引,也被認為是信任AI所驅動成果之必要條件。 貳、重點說明 因有高達9成之成員國認為責任規則為推動AI於醫療照護領域廣泛應用之關鍵政策因素,為促進AI應用,本報告建議應明確開發者、臨床醫生、資料提供者與醫療機構之責任,並建立相應機制,以便於AI系統造成損害時及時補救與追究責任,此可確保AI生命週期中每個參與者都能瞭解自身之義務,責任透明,並透過可及之救濟與執法管道以保護病患與醫療系統之權益;以及可利用監管沙盒,使監管機構、開發人員與醫療機構能夠在真實但風險較低之環境中進行合作,從而於監管監督下,於廣泛部署前能及早發現安全、倫理與效能問題,同時促進創新。 此外,WHO歐洲區域官員指出,此次調查結果顯示AI於醫療領域之革命已開始,惟準備程度、能力與治理水準尚未完全跟進,因此呼籲醫療領域之領導者與決策者們可考慮往以下四個方向前進[2]: 1.應有目的性地管理AI:使AI安全、合乎倫理與符合人權; 2.應投資人才:因科技無法治癒病人,人才是治癒病人之根本; 3.需建構可信賴之資料生態系:若大眾對資料缺乏信任,創新就會失敗; 4.需進行跨國合作:AI無國界,合作亦不應受限於國界。 參、事件評析 AI於醫療系統之應用實際上已大幅開展,就歐洲之調查可知,目前雖多數國家已致力於AI於醫材監管法規與資料利用規則之建立,據以推動與監管AI醫療科技之發展,惟由於醫療涉及患者生命身體之健康安全,因此絕大多數國家皆同意,真正影響AI於醫療領域利用之因素,為責任規則之建立,然而,調查結果顯示,實際上已建立醫療領域AI之責任標準者,卻僅有8%之成員國(50個國家中僅有4個國家已建立標準),意味著其為重要之真空地帶,亟待責任法制上之發展與填補,以使廠商願意繼續開發先進AI醫療器材、醫療從業人員願意利用AI醫療科技增進患者福祉,亦使患者於受害時得以獲得適當救濟。亦即是,當有明確之責任歸屬規則,各方當事人方能據以瞭解與評估將AI技術應用於醫療可能帶來之風險與機會,新興AI醫療科技才能真正被信任與利用,而帶來廣泛推廣促進醫療進步之效益。由於保護患者之健康安全為醫療領域之普世價值,此項結論應不僅得適用於歐洲,對於世界各國亦應同樣適用,未來觀察各國於AI醫療領域之責任規則發展,對於我國推廣AI醫療之落地應用亦應具有重要參考價值。 [1] Artificial intelligence is reshaping health systems: state of readiness across the WHO European Region, WHO, Nov. 19, 2025, https://iris.who.int/items/84f1c491-c9d0-4bb3-83cf-3a6f4bf3c3b1 (last visited Dec. 9, 2025). [2] Humanity Must Hold the Pen: The European Region Can Write the Story of Ethical AI for Health, Georgia Today, Dec. 8, 2025,https://georgiatoday.ge/humanity-must-hold-the-pen-the-european-region-can-write-the-story-of-ethical-ai-for-health/ (last visited Dec. 9, 2025).
智慧財產權管理標準之建立-由管理系統標準談起(下)