何謂「日本A-STEP計畫」?

  日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。

  研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「日本A-STEP計畫」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7608&no=64&tp=1 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用

  根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。   近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。   傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。   此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。   其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」

日本要求半導體等重要技術技轉前須進行報告,以強化技術管理

日本經濟產業省下之貿易經濟安全保障局,於2024年9月公布「建立強化技術管理之新官民對話框架」文件(技術管理強化のための新たな官民対話スキームの構築について),指出在目前複雜的地緣政治情勢下,企業難以獨自進行技術管理,故須透過強化官民對話,讓雙方可共享現況及問題,俾利政府檢討管理措施。 經產省為強化技術管理,擬修正依《外匯與外國貿易法》(外国為替及び外国貿易法,以下簡稱外為法)授權制定之省令及告示,要求業者於技轉「重要技術」時,須依外為法第55條第8項進行事前報告,以利後續透過官民對話達成共識。經產省強調,上述規定目的不是禁止技術移轉,而是進行適當之技術管理,故原則希望能透過官民對話來解決問題。惟若在雙方對話後,經產省認為有技術外流之虞時,仍會要求業者申請許可。 根據經產省於2024年9月6日公布之省令及告示修正案,以下4大領域10項技術被列為「重要技術」: 1.電子元件:積層陶瓷電容(積層セラミックコンデンサ(MLCC))、SAW和BAW濾波器(SAW及びBAWフィルタ)、電解銅箔、介電質薄膜(誘電体フィルム)、鈦酸鋇粉末(チタン酸バリウム粉体)。 2.纖維:碳纖維(炭素繊維)、碳化矽纖維(炭化ケイ素繊維)。 3.半導體:光阻劑(フォトレジスト)、非鐵金屬材料(非鉄金属ターゲット材)。 4.電子顯微鏡:掃描式電子顯微鏡(走査型電子顕微鏡(SEM))、穿透式電子顯微鏡(透過型電子顕微鏡(TEM))。

美國國家製造創新網絡2016年度報告

  依2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014),美國國家製造創新網絡計畫於2016年2月公布年度報告(Annual Report)。國家製造創新網絡計畫的目標是處理發生於執行面的、介於初期基礎研究與技術布建之間的製造技術轉型(manufacturing related technology transition)挑戰。   國家製造創新網絡計畫的關鍵核心之一,是連結創新與製造,而「研發機構」(Institute)在這當中扮演最為關鍵的角色。此所稱之研發機構,係指2013年「國家製造創新網絡先期規劃」(NNMI-PD)以及2014年復甦美國製造與創新法(RAMI Act of 2014)第278s條(c)項所界定之「製造創新中心」(center for manufacturing innovation)——其採公私合營制(public-private partnership),其成員可包括各該業界之業者與學研機構,以及商務部長認屬適當之產業聯盟(industry-led consortia)、技職教育學校、聯邦政府所屬實驗室、以及非營利機構等。「研發機構」將以上之利害關係各方匯聚形成一個創新生態系(innovation ecosystem),以共同因應高風險之製造業挑戰並協助製造業者維持並提升產能與競爭力。   我國於民國105年7月由行政院核定通過之「智慧機械產業推動方案」,亦規劃透過「智機產業化」與「產業智機化」,建構智慧機械產業生態體系,整合產學研能量,並深化智慧機械自主技術中長期布局與產品創新。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP