何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?

  「專利蟑螂」( Patent Troll)由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。

  「專利蟑螂」主要特徵有三;(1)主要係藉由專利取得的方式,向潛在或可能的專利侵權者收取費用;(2)此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;(30此類NPE投機性地等待商品製造者在投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張。

  然而,一般對於NPE對專利制度以及專利市場之影響,會以Patent Troll之行為模式作為觀察起點,例如,有論者認為專利蟑螂所從事購買與再行出售專利的行為,可以增進專利交易市場的效率化。同時,該行為不僅讓弱勢的專利創作者享有因其創作所產生的財務收益外,其亦發揮了同於仲介者(dealers)或是市場創造者(market-makers)功能的專利金融性市場 。亦有論者認為,專利蟑螂的行為已經帶來經濟上的危害(economic harm),因其慣於同時向不同公司索取適度的(moderate)專利授權費用。而為了避免陷入風險極高且耗費甚鉅的專利侵權訴訟,被索取專利授權費用之公司皆傾向給付專利蟑螂一定額度的專利授權金,以免除陷入不確定專利訴訟的泥皁。同時,專利蟑螂亦傾向選擇目標公司(target companies)最脆弱的時點,例如:新產品的發表、宣傳費用的投入等,再對其提出專利侵權訴訟,使其被迫必須遵循專利蟑螂的要求來擺脫可能陷入專利侵權訴訟的羈絆。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7611&no=55&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

HP控告其前總裁違約及即將盜用營業秘密一案快速以和解收場

電腦製造大廠HP 於得知其競爭對手Oracle 公司聘用其離職總裁Mark V. Hurd後隨即於加洲法院提起違約(breach of contract)及即將發生盜用營業秘密(threatened misappropriation of trade secrets)之訴訟,但又在短短兩周內雙方達成和解。 HP前總裁Mark V. Hurdy 於八月因被HP董事會指控違反該公司之企業行為規範(code of business conduct)而閃電辭職,隨即受邀接受擔任Oracle 公司共同總裁(Co president) 一職。HP於獲知消息後隨即對Mark V. Hurd提起違約及即將發生盜用營業秘密之訴訟。HP表示其前總裁簽署過保密合約對HP之營業秘密及機密資訊負有保密之義務。HP認為若Mark V. Hurdy任職於其競爭對手Oracle 公司,將對HP造成威脅且將會違反其所負擔之保密義務,因為了於Oracle 公司執行其職務,Mark V. Hurdy必然會使用且洩漏HP之營業秘密及機密資訊。 然於在不到兩周的時間,雙方隨即達成和解。Mark V. Hurdy承諾不會洩漏HP的營業秘密給他的新雇主同時必須放棄346,030 units 的限制性股權(restricted stock units),總價值高達美金4千萬元。 多數觀察家認為HP提起此訴訟案之目的不在阻止其前總裁前往競爭對手工作而主要是在企圖追回Mark V. Hurdy因離職而取得的大量股票權益。

美國最高法院明確放寬專利權耗盡原則之適用範圍

  美國最高法院於2017年5月30日針對Impression Products v. Lexmark International作出最終裁決,說明當專利權人銷售專利產品時,無論在美國境內或境外,專利權人不能再以美國專利法來限制該專利產品,一經銷售後該產品專利權已經耗盡。   本案起因為美國印表機研發製造大廠Lexmark推出兩項碳粉匣方案:原價碳粉匣,無任何轉售限制;以及優惠碳粉匣,並附帶「一次性使用」(single use)及「不得轉售」(no resale)限制條款,消費者不得自行填充再利用、再轉售或轉讓給原廠以外的第三方。本案專利權人Lexmark控告同業Impression侵害其權利(違反一次性使用及不得轉售),被告Impression則主張兩項碳粉匣產品的專利權在美國境內的首次銷售後就已耗盡了。該案爭點包含:(一)專利產品在境外首次授權或銷售,是否導致專利權耗盡;(二)專利權人訂立售後限制條款,可否用以追究當事人違反限制條款責任?   地院引述最高法院過去兩個判例(Quanta案及Kirtsaeng案),裁定Lexmark專利產品因首次授權銷售情形而權利耗盡。原告Lexmark提出上訴,CAFC則認為專利產品在境外銷售情形,不會導致專利權人在境內專利權耗盡,且在首次銷售時給的授權,已經合法限制再銷售或再使用,故Impression仍構成專利侵權。   最終,最高法院推翻CAFC見解,認為無論是專利權人直接銷售,或是對專利產品加諸任何限制,專利權人決定銷售產品時,該產品相關的專利權就會耗盡。另外最高法院亦指出,當專利權人透過契約與購買者約定,限制其使用或轉售的權利,其在契約法上或許有效,但在專利侵權訴訟中則沒有用。本案後,最高法院確立採國際耗盡原則,說明專利權人在全球任何地方,產品經銷售後即權利耗盡,無論專利權人是否有任何售後限制。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

TOP