何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?

  「專利蟑螂」( Patent Troll)由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。

  「專利蟑螂」主要特徵有三;(1)主要係藉由專利取得的方式,向潛在或可能的專利侵權者收取費用;(2)此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;(30此類NPE投機性地等待商品製造者在投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張。

  然而,一般對於NPE對專利制度以及專利市場之影響,會以Patent Troll之行為模式作為觀察起點,例如,有論者認為專利蟑螂所從事購買與再行出售專利的行為,可以增進專利交易市場的效率化。同時,該行為不僅讓弱勢的專利創作者享有因其創作所產生的財務收益外,其亦發揮了同於仲介者(dealers)或是市場創造者(market-makers)功能的專利金融性市場 。亦有論者認為,專利蟑螂的行為已經帶來經濟上的危害(economic harm),因其慣於同時向不同公司索取適度的(moderate)專利授權費用。而為了避免陷入風險極高且耗費甚鉅的專利侵權訴訟,被索取專利授權費用之公司皆傾向給付專利蟑螂一定額度的專利授權金,以免除陷入不確定專利訴訟的泥皁。同時,專利蟑螂亦傾向選擇目標公司(target companies)最脆弱的時點,例如:新產品的發表、宣傳費用的投入等,再對其提出專利侵權訴訟,使其被迫必須遵循專利蟑螂的要求來擺脫可能陷入專利侵權訴訟的羈絆。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7611&no=55&tp=5 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
歐盟日前開始適用非個資之資料流通規則

  歐盟於2018年11月間通過Regulation (EU) 2018/1807,即促進非屬個人資料(下簡稱個資)之資料流通規則(下簡稱規則),藉以促進歐洲單一數位市場之規模經濟,並於2019年05月28日開始適用,據此,歐盟執委會亦因應該規則而頒布指引(COM(2019) 250 final),以釐清規則與GDPR之互動關係。   該規則開宗明義表示其制定係為了促進非屬個資之資料(下稱資料)流通,即其適用範圍包含(1)提供予歐盟境內之用戶使用,或(2)在歐盟境內之人依其需要所衍生者等資料,但排除GDPR第4條所定義之個資,故不排除GDPR之適用可能,申言之,若資料集中同時含有資料與個資,則流通則應分別適用本規則及指引(資料部份)與GDPR(個資部份)。   此外,為有效達成資料流通,各個歐盟成員國原則上禁止作出資料在地化要求(Data Localisation Requirements),例外僅於公共安全之前提下,且有充分的理由,方得做出合比例性之要求,並於單一資訊網站上即時更新資料在地化要求之清單,不過至遲在2021年05月30日前,成員國須確認其境內之相關規範已無前開例外之資料在地化要求。   又,為使歐盟各成員國就資料流通之無礙溝通,各成員國應設單一聯繫窗口,而在(1)歐盟相關規定或(2)國與國間不具特定合作機制,致成員國無法取得資料之近用權限時,該成員國之單一聯繫窗口得向資料所屬成員國之單一聯繫窗口發出協助請求,並附上請求之原因說明與近用資料之法律依據。   綜上,本規則及其指引與GDPR及其相關規定,對於資料與個資等流通分別建構出穩固的法律系統與環境。

美國參議院提出《產業融資公司法案》成立美國產業金融機構(IFCUS)助高科技產業技術發展與強化供應鏈韌性

  美國參議院於2021年8月12日提出全新《產業融資公司法案》(Industrial Finance Corporation Act),擬授權成立美國產業金融公司(Industrial Finance of the U.S., IFCUS)投資半導體、量子運算、人工智慧、網路安全、生物科技等高科技領域,旨在促進國內製造業創新和打造良好就業機會。   本法案首先點出國內在關鍵技術供應鏈上所面臨的困境,包括「國內製造商缺乏足夠的資金管道致技術工作外包,影響到美國在關鍵技術(如半導體和5G通訊硬體)生產的主導地位」、「目前美國的創新模式較依賴私人資本協助政府將研究成果產品化,然因私人資本通常會傾向尋求短期投資回報,與新興技術領域較需採長期投資發展策略有別」,以及「官方捐款計劃跟不上創新步伐使得納稅人須承擔技術創新的高風險,但卻無法獲得相應的高回報」。接著,法案提到為解決前述困境,擬藉由法案授權成立美國國有企業產業金融公司(IFCUS),以投資方式協助與經濟國家安全相關重要產業之發展,並幫助相關產業利用額外私人資金,使納稅人在承擔高風險之際,亦有機會獲取相應的高回報。   依據《產業融資公司法案》所成立之國有企業產業金融公司(IFCUS),則將支持關鍵產業彈性供應鏈、美國製造業經濟發展及就業機會、先進技術商業化、中小企業廠商與資金門檻較低廠商、易受系統性投資不足與不公平產業政策等。在具體運作模式上,IFCUS將先與私人企業合作,利用法案所授權的500億美元資本進行融資,並由IFCUS發行及提供擔保貸款、購買股權、發行債券、收購資產、創建投資設施和企業基金及投資證券化等,藉以創造更多資本額。並鑒於IFCUS為一國營單位,相對較有能力保持優良的社會環境和勞動標準,創造全國就業機會、減少環境危害及對公眾與國會負責,同時確保企業決策係為納稅人服務。最後,透過IFCUS與政府研究機構協調,建立保障措施,以及提供私人資本和政府計畫補助,鼓勵天使投資以降低市場競爭影響。簡而言之,即希望憑藉IFCUS國有企業之設立,為美國高科技製造業提供策略性投資、產經政策等具體援助,藉以強化供應鏈韌性。

日本個人資料保護法修正案允許變更利用目的引發各界議論

  日本國會於本會期(2015年1月)中,進行個人資料保護法修正草案(個人情報保護法の改正案)的審議。修正草案研擬之際,歷經多次討論,IT總合戰略本部終於在2014年6月公布修正大綱,後於同年12月公布其架構核心。   本次修正,主要目標之一,是使日本成為歐盟(EU)所認可之個人資料保護程度充足的國家,進而成為歐盟所承認得為國際傳輸個人資料的對象國;為此,此次修正新增若干強化措施,包含(1)設立「個人資料保護委員會」;(2)明訂敏感資料(包含種族、病歷、犯罪前科等)應予以嚴格處理;(3)明訂資料當事人就其個人資料得行使查詢或請求閱覽等權利。   本次修正的另一個目標,則是促進個人資料利用及活用的可能性。2014年中,日本內閣府提出「有關個人資料利活用制度修正大綱」,提倡利用、活用個人資料所帶來的公共利益,並指出,過往的法規僅建構於避免個人資料被濫用的基礎,已不符合當今需求,且易造成適用上的灰色地帶,應透過修法予以去除;未來應推動資料的利用與活用相關制度,來提升資料當事人及公眾的利益。本次修正因此配合鬆綁,允許符合下述法定條件下,得變更個人資料之利用目的:(1)於個人資料之蒐集時,即把未來可能變更利用目的之意旨通知資料當事人;(2)依個人資料保護委員會所訂規則,將變更後的利用目的、個人資料項目、及資料當事人於變更利用目的後請求停止利用的管道等,預先通知本人;(3)須使資料當事人容易知悉變更利用目的等內容;(4)須向個人資料保護委員會申請。   目標間的兩相衝突,使得該案提送國會審議時,引發諸多爭議。論者指出:允許在特定條件上變更個人資料的利用目的,雖顧全資料利用的價值,但似不符合歐盟個人資料保護指令對於個人資料保護的基準,恐使日本無法獲得歐盟認可成為資料保護程度充足的國家,亦徹底喪失此次修正的最重要意義。

英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展   人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊   人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。   目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。   在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題   人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。   有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。   針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。   人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

TOP