何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?

  「專利蟑螂」( Patent Troll)由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。

  「專利蟑螂」主要特徵有三;(1)主要係藉由專利取得的方式,向潛在或可能的專利侵權者收取費用;(2)此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;(30此類NPE投機性地等待商品製造者在投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張。

  然而,一般對於NPE對專利制度以及專利市場之影響,會以Patent Troll之行為模式作為觀察起點,例如,有論者認為專利蟑螂所從事購買與再行出售專利的行為,可以增進專利交易市場的效率化。同時,該行為不僅讓弱勢的專利創作者享有因其創作所產生的財務收益外,其亦發揮了同於仲介者(dealers)或是市場創造者(market-makers)功能的專利金融性市場 。亦有論者認為,專利蟑螂的行為已經帶來經濟上的危害(economic harm),因其慣於同時向不同公司索取適度的(moderate)專利授權費用。而為了避免陷入風險極高且耗費甚鉅的專利侵權訴訟,被索取專利授權費用之公司皆傾向給付專利蟑螂一定額度的專利授權金,以免除陷入不確定專利訴訟的泥皁。同時,專利蟑螂亦傾向選擇目標公司(target companies)最脆弱的時點,例如:新產品的發表、宣傳費用的投入等,再對其提出專利侵權訴訟,使其被迫必須遵循專利蟑螂的要求來擺脫可能陷入專利侵權訴訟的羈絆。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7611&no=55&tp=5 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
美國發布了「消費者隱私權法」草案

  美國白宮在2015年2月27日發布了「消費者隱私權法」(Consumer Privacy Bill of Rights Act)草案,目的在於擴大消費者資料的保護範圍。 該草案的重點分列如下: 透明性:受規範主體必須提供資訊主體簡潔、明顯、易懂的公告,公告內容必須提供簡潔、明瞭及即時的隱私與安全運作,包含資訊保存、揭露以及個人資料存取機制。 個人控制:受規範主體應該在合理範圍內提供機制,讓資料主體能控制其個人資料之處理,同時也規範應讓消費者撤銷個人資料使用的同意。 注重資料蒐集與合理使用:受規範的公司機構必須依據其清楚、合理的說明規則來進行個人資料的蒐集、保存與利用。同時,在資料蒐集之特定目的完成後的合理時間內,必須針對所蒐集的個人資料進行刪除或是去識別化。 安全性的維護:為了維護個人資料之安全性,以防止其遺失、陷入危險、改變以及未經授權之使用或是揭露,公司機構必須進行安全風險評估,並且採取合理的資訊安全防護措施。 存取與正確性:受規範的公司機構必須提供資訊主體合理的存取權利,同時也應該採取合理的步驟,來維護資料的正確性。 擔負隱私維護的責任:受規範的公司機構必須針對員工實施資安教育訓練、進行隱私評估、隱私設計、遵守隱私保護義務以及採取適當的措施來遵循本草案之規定。 不受本草案規範之公司機構: 25名員工以下的小型公司,且其處理者僅限於員工與求職者之個人資料。 未刻意蒐集、處理、使用、保存或揭露個人病史、原生國籍、性傾向、性別、宗教信仰、資產狀況、精確的位置資訊、獨一無二的生物識別資料或是社會安全號碼,並符合以下要件之一者: 在12個月內蒐集個人資料筆數在10,000筆下; 5名員工以下。   除了要求產業發展處理消費者資料的標準或規則,該草案也要求「聯邦貿易委員會」(Federal Trade Commission, FTC)確認產業所制定的標準或規則必須符合「消費者隱私權法」的規定,包括提供消費者有關其資料如何被收集、使用與分享的明確通知。如果進行消費者資料收集的公司機構違反了「消費者隱私權法」,將會面臨FTC或是州檢察長所發起的法律行動。   該草案引起了產業界極大的反彈,隱私團體也批評該草案太過寬鬆,留給產業界太多自由空間,同時目前國會由共和黨所主導,因此後續立法工作的進行將會面臨極大的挑戰。

美國總統發布行政命令啟動創世紀任務,整合AI資源加速科學發現,鞏固AI技術領導地位

美國總統川普於2025年11月24日發布行政命令(Executive Order)啟動創世紀任務(Launching The Genesis Mission),旨在建立美國科學與安全AI平臺(下稱AI平臺),整合聯邦政府長期累積之科學資料集、國家研發及運算資源,訓練可自動化研究、加速科學發現之AI模型,強化國家安全、提高勞動生產力及研發投資報酬率,鞏固美國AI技術領導地位。 行政命令重點如下: (1)權責分配:由能源部長(Secretary of Energy)確保將執行創世紀任務所需資源統一整合至AI平臺,並訂定安全計畫。由總統科學技術助理(Assistant to the President for Science and Technology, APST)領導,透過國家科學技術委員會(National Science and Technology Council, NSTC)協調所有參與之行政部門。 (2)AI平臺之運作:提供能源部國家實驗室超級電腦、安全雲端運算環境等高效能運算資源、AI建模與分析框架、運算工具、各學科領域基礎模型,並在適法前提下,提供聯邦政府所管理之資料集、開放科學資料集或能源部生成之合成資料集。 (3)識別國家科學技術挑戰:能源部長應提交創世紀任務優先應對之國家重要科學技術挑戰清單,涵蓋先進製造、生物科技、關鍵原物料、核能、量子資訊科學、半導體與微電子學領域,經APST審查並與NSTC參與成員研議後定案。 (4)跨部門協調及外部參與:召集相關部門參與,訂定資源配置計畫整合各部門可用資料與基礎設施。提供獎補助,鼓勵私部門參與符合任務目標之AI驅動科學研究。設立研究獎學金、實習與學徒制計畫,提供AI平臺使用權及AI賦能科學發現培訓。在維護聯邦研究資產安全及公共利益最大化之前提下,建立標準化合作夥伴機制,與擁有先進AI、資料、運算能力或科學專業知識之外部夥伴合作。 行政命令就前述事項設定執行時程,且明定自發布之日起1年內及此後每年,能源部長應向總統提交報告,說明各事項之運作情況與達成成果。

美國駭客使用殭屍網路 遭判刑57個月

  鑑於網際網路發達,日常生活中之購物、儲匯業務均能透過網路完成,為生活增加許多的便利,然犯罪行為亦隨著科技之發展,悄悄的從傳統社會轉移到虛擬世界。根據美國司法部公佈的資料顯示,目前因違反美國 18 U.S.C. §1030 電腦詐欺法規定( Fraud and Related Activity in Connection with Computers )而進入司法程序的電腦犯罪案件,主要包括:竊取私人資料、線上非法交易(網路詐欺等)、駭客攻擊行為、製作或散佈病毒、遙控僵屍網路、竄改信用卡資料等行為。其中 Jeanson James Ancheta 案是一個具指標意義的案件。   今年五月洛杉磯 R. Gary Klausner 法官做出 Jeanson James Ancheta 案的判決,該案是美國境內第一起因為使用僵屍網路( botnets )而被判刑的案件。 Ancheta 被控攻擊政府網站、對數千台電腦主機進行駭客攻擊,並利用被攻擊的電腦串聯成僵屍網路,進行寄發廣告信或具破壞性的駭客攻擊以牟利而遭起訴。本案判決 Jeanson James Ancheta 因散佈電腦病毒、違反電腦詐欺法( Computer Fraud Abuse Act )、違反垃圾郵件法案( CAN-SPAM Act )被判以 57 個月的有期徒刑。   根據助理檢察官 Aquilina 表示,該案件是美國近年來處理電腦犯罪案件中,量刑最重的一個判決,希望透過此一判決,對僵屍網路操控者( botmasters )及居心不良的駭客產生嚇阻之效果。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP