經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國閒置頻譜發展近況為了讓業者間服務不受干擾,政府在規劃頻段時,皆會設置護衛帶(Guard Band),以維持服務品質。不過,隨著科技的進步,業者彼此干擾程度降低,頻譜的使用也較過去有效率,導致頻段常有閒置的情況。是故,FCC在2008年正式公告開放閒置頻譜(white space),透過業者無須取得執照,以增加頻譜的活用與增加民眾網路接取。美國在2009年完成無線電視數位化後,亦從700MHZ較低頻段留下成對5*5MHz,期望透過該頻段覆蓋率高特性,增加業者投資偏遠地區,使當地民眾享有網路帶來的便利性。 閒置頻譜的開放利用,雖可增加公益性與頻譜使用性,但亦存有干擾無線麥克風、行動電話與廣播服務等服務之虞。FCC為了兼顧各業者服務品質與頻譜有效運用,透過地理位址功能(geo-location capability),輔以成立數據資料庫的方式,藉由資訊透明減少頻譜開放後的互相干擾。今年FCC閒置頻譜的發展,3月允許全國可建置TV Band Devices,期以迅速活化頻譜利用;5月公告低功率的電台須登記資訊於數據資料庫,以避免服務受到干擾。6月,FCC宣佈Google通過測試,成為美國第三家數據資料庫業者,增加服務競爭性。部分輿論則是認為Google在擁有地圖與數據資料庫後,將會更致力在偏遠地區使用無需執照頻譜(Unlicensed Spectrum),此舉無疑是增加Google服務影響力。 政府具有規劃性開放的結果,已直接影響民間投入閒置頻譜的利用。目前,Google與微軟相繼於非經濟地區,建置「閒置頻譜」設備,期以將網路服務滲入美國各角落。西維吉尼亞大學(West Virginia University)宣佈將開發校園與周邊地區的閒置頻譜,已提供鄰近區域免費Wi-Fi服務。除此之外,亦有部分企業透過策略聯盟發展「圖書館Gigabit網路」計畫,期以透過無線電視頻段具備高涵蓋與穿透力之特性,使圖書館與附近地區皆可享受免費無線網路。該聯盟已於五月宣布選擇堪薩斯城(Kansas City)公共圖書館為試點區, 且持續公開徵求自願參與之圖書館。 綜上所敘,在業者服務彼此不受干擾為前提下,閒置頻譜的開放確實可活化使用效率與增加網路接取性。並且,輔以無線電視空白頻段之優勢,可以預見未來Wi-fi無論是網速亦或是穩定度,其品質將更為提升,使無所不在網路落實於社會每個角落。
新加坡科技與研究局針對未來工廠提出研究規劃及方向新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。 為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。
2025年美國法院以「後設資料」作為審理AI深偽數位證據案件之重點2025年9月Mendones v. Cushman and Wakefield, Inc.案(下稱Mendones案),面對生成式AI與深偽(deepfakes)對數位證據真實性的威脅,美國法院特別提到針對後設資料(metadata)的審查。 基於Mendones案原告提交9項涉嫌使用生成式AI的數位證據,其中證詞影片6A與6C影片具備「人物缺乏臉部表情、嘴型與聲音不相符,整體表現像機器人一樣」且「影片內容循環撥放」等AI深偽影片之典型特徵,法院懷疑原告舉證的數位證據為AI深偽影片。 因此,法院要求原告須提出該影片的後設資料,包含文件格式、創建/修改日期、文件類型、拍攝影片的快門速度等客觀資訊。 法院表示,原告提交的後設資料不可信,因為包含許多通常不會出現在後設資料的資訊(非典型的資訊),例如:著作權聲明。且法院進一步指出,許多非典型的資訊被放在不相關的欄位,例如:Google地圖的URL網址、電話號碼、GPS座標及地址等被放在「音樂類型」(musical genre)欄位內。因此法院懷疑,前述「非典型之後設資料」是被有存取文件與編輯權限的人添加的「後設資料」。 原告則主張,其透過iOS 12.5.5版本作業系統的Apple iPhone 6 Plus手機拍攝影片6A。法院指出,直到iOS 18版本作業系統,iPhone才推出可用於生成深偽影片的新功能「Apple Intelligence」相關技術,且該版本需要使用iPhone 15 Pro或更新的手機機型,因此法院發現技術上的矛盾。 法院認為,本案生成式AI影片已超越提交虛假引文(Fictitious Citations,即過往案例曾出現過律師提出AI虛構的判例之情況)的範疇。在訴訟中使用深偽證據,嚴重影響了法院的審理與公眾對司法的信任,並增加法院評估該證據是否為深偽之成本。因此,法院採取嚴厲的永久駁回訴訟(dismissed with prejudice),以表示對企圖以深偽資料為證據的行為持「零容忍」態度。 Mendones案展現法院審理AI深偽數位證據的細節,如「審視後設資料之內容準確、完整」為法院確認數位證據真實性的重要手段。 面對AI時代下數位證據的挑戰,我國司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同推動之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」結合區塊鏈技術。「b-JADE證明標章」確保鏈下管理數位資料原檔的機制,以及鏈上的「存證資料」包含「與數位原檔資料最終版本連結的『必要後設資料』」、雜湊值及時戳,如能妥適運用司法聯盟鏈進行證據「驗真」程序,將有助於強化數位信任。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)