美國最高法院就蘋果與三星間關於設計專利侵權一案進行審理

  美國加州聯邦法院於2015年12月裁定三星侵犯iPhone設計專利,需向蘋果賠償5.48億美元。三星不服因此上訴至美國最高法院,美國最高法院於今年(2016)10月11日開庭審理韓國三星電子公司的專利侵權糾紛案,針對加州聯邦法院授予蘋果的賠償金是否過多一事進行審議。

  智慧手機是包含多個部件、技術之複雜產品,設計專利持有者不能因為某項專利侵權而要求獲得整個產品之全部利潤。本件上訴案中,三星聲稱「被認定侵權的功能僅占三星電子手機價值的1%,蘋果卻得到了三星電子100%的利潤」,認為加州聯邦法院針對侵犯蘋果的設計專利涉及手機的外觀(如圓角長方形機身、用戶介面),判定需用侵權產品的全部銷售利潤來支付蘋果3.99億美元之設計侵權賠償金並不公平。蘋果則表示,蘋果手機的成功與其獨特的外觀有直接關係,三星故意抄襲蘋果的創新設計並因此大幅提升產品銷量,因此有權要求侵權產品之全部利潤。

  三星和蘋果間的專利糾紛訴訟已持續多年,自2011年起,已發生多起關於智慧型手機、平板在技術、用戶介面及風格上之抄襲糾紛。目前兩家公司在本案庭審中仍各執己見,而美國最高法院預計將於明年(2017)6月作出判決。

相關連結
※ 美國最高法院就蘋果與三星間關於設計專利侵權一案進行審理, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7631&no=55&tp=1 (最後瀏覽日:2025/12/24)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

歐盟擬立法要求電信業者及ISP業者保留通聯紀錄

  歐洲議會民眾權益委員會( the European Parliament's civil liberties committee)於2005年11月25日以33票對8票通過新的指令草案,要求電話與網路的通聯紀錄(但不包含內容紀錄)均需被保留6個月到12個月。目前此草案已送交部長理事會(Council of Ministers)審議中。   為避免保留之通聯紀錄遭到濫用,民眾權益委員會要求僅法官可以調閱通聯紀錄,且僅限於調查重大犯罪(例如恐怖份子或是組織犯罪)時始可調閱。但創作及媒體企業協會( the Creative and Meida Business Alliance, CMBA)則希望歐盟能放寬通聯紀錄調閱之限制,允許進行所有犯罪之調查時,特別是在查緝盜版犯罪之情形,能調閱通聯紀錄。   對於業者因配合保留通聯紀錄而增加的額外負擔,則可能透過轉嫁給消費者或是透過整府補貼的方式解決。

從德國法談濫發商業電子郵件之規範

歐盟發布新人工智慧規範,以風險程度判斷防止科技濫用

  歐盟執委會於2021年4月21日提出「人工智慧規則」(AI regulation)草案,成為第一個結合人工智慧法律架構及「歐盟人工智慧協調計畫」(Coordinated Plan on AI)的法律規範。規範主要係延續其2020年提出的「人工智慧白皮書」(White Paper on Artificial Intelligence)及「歐盟資料策略」(European Data Strategy),達到為避免人工智慧科技對人民基本權產生侵害,而提出此保護規範。   「人工智慧規則」也依原白皮書中所設的風險程度判斷法(risk-based approach)為標準,將科技運用依風險程度區分為:不可被接受風險(Unacceptable risk)、高風險(High-risk)、有限風險(Limited risk)及最小風險(Minimal risk)。   「不可被接受的風險」中全面禁止科技運用在任何違反歐盟價值及基本人權,或對歐盟人民有造成明顯隱私風險侵害上。如政府對人民進行「社會評分」制度或鼓勵兒童為危險行為的語音系統玩具等都屬於其範疇。   在「高風險」運用上,除了作為安全設備的系統及附件中所提出型態外,另將所有的「遠端生物辨識系統」(remote biometric identification systems)列入其中。規定原則上禁止執法機構於公眾場合使用相關的生物辨識系統,例外僅在有目的必要性時,才得使用,像尋找失蹤兒童、防止恐怖攻擊等。   而在為資料蒐集行為時,除對蒐集、分析行為有告知義務外,也應告知系統資料的準確性、安全性等,要求高度透明化(Transparency obligations)。不只是前述的不可被接受風險及高風險適用外,有限風險運用中的人工智慧聊天系統也需要在實際和系統互動前有充足的告知行為,以確保資料主體對資料蒐集及利用之情事有充足的認知。   在此新人工智慧規範中仍有許多部份需要加強與討論,但仍期望在2022年能發展到生效階段,以對人工智慧科技的應用多一層保障。

TOP