何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?

  中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。

  ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型:
1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。
2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。
3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。

本文為「經濟部產業技術司科技專案成果」

※ 何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7639&no=64&tp=1 (最後瀏覽日:2025/12/29)
引註此篇文章
你可能還會想看
新德國包裝法簡介

  為有效降低包裝廢棄物對環境造成的汙染及不利影響,使製造商履行其B2C(business to customer)產品責任,德國以新的包裝法(Packaging Act, VerpackG)取代現行的規範(Packaging Ordinance,VerpackV),並已於2019年1月1日生效。   新包裝法VerpackG不同於VerpackV之處,在於除要求業者須加入原有的回收系統外,另授權Zentrale Stelle(Stiftung Zentrale Stelle Verpackungsregister,ZSVR)基金會作為新包裝法強制登記制度的執行單位,規範欲在德國銷售產品包裝之所有實體或網路製造商及零售商,有義務於ZSVR的數據資料庫”LUCID”註冊,才能在德國地區進行銷售,並且為全面提升透明度,乃規範於LUCID註冊之商家資訊皆屬可供大眾公開查詢。   依VerpackG規定,於2019年1月1日起未為註冊的商家,其包裝商品不能在德國上市,否則恐將臨100,000歐元之罰款;另未加入回收系統之商家,恐面臨200,000歐元之罰款。而除須註冊與回收系統的加入外,製造商及零售商尚須將以下之包裝相關資訊提供給ZSVR做比對: (一)註冊號碼(商家於資料庫註冊時,由ZSVR所提供之註冊號碼) (二)包裝材料及容積 (三)製造商履行生產者延伸責任(Extended Producer Responsibility)簽訂的包裝方案名稱 (四)與回收公司或回收系統間簽訂之契約期限 資料來源:自行繪製 圖 德國包裝法實施步驟

英國競爭與市場管理局發布人才競爭指引

2025年9月9日英國競爭與市場管理局(Competition and Markets Authority,簡稱CMA)發布人才競爭指引(Competing for Talent),說明企業在勞動市場中採取何種行為可能會違反競爭法。 指引中指出三項於勞動市場中可能會違反競爭法的行為,分別是: (1)禁止挖角(no poach):指企業同意不向其他企業招募現職員工,或同意在未經他企業許可前,接觸或招募該公司的現職員工,此一行為可能違反競爭法;惟須考量與禁止招募條款(no-solicitation clauses)之差異,禁止招募條款係為避免企業離職員工或合作企業於一定期間內直接或間接招募企業員工、客戶或其餘合作夥伴,禁止招募條款於合理必要範圍內之限制並不違反競爭法。 (2)固定薪資(wage fixing):此為CMA近期的執法重點,指二個以上之企業就薪資及員工福利達成協議,包含薪資調漲幅度、設定薪資上限,或是依產業工會建議薪資來固定員工薪資等等。 (3)交換競爭敏感資訊(exchange of competitively sensitive information):係指競爭對手間不應交換競爭敏感資訊,包含定價方式、商業策略等等,即使接收方未根據獲得的敏感資訊採取對應措施,提供資訊方仍被認定為違反競爭法。 上述協議不以正式或是書面之方式達成一致為必要,企業間的社交聯繫、非正式的互動或君子協議(gentleman’s agreements)均屬之,且皆可能違反競爭法,違法之企業可能會面臨全球營業總額10%的罰款、禁止參與政府採購、面臨私人損害賠償訴訟等結果。 近年勞動市場與競爭法之議題正逐漸受到重視,除了英國,美國、歐盟、日本等亦發布相關指引文件,或對違反競爭法之企業進行調查或裁罰。我國公平交易委員會目前尚未針對此議題提出明確的論述,企業於勞動市場中限制競爭之行為,究竟如何適用公平交易法或屬勞動法範疇,仍有待相關部會進一步討論,相關國際發展趨勢仍可持續觀察作為我國公平交易法制發展後續參考方向。

台幹入股台資企業亦屬在大陸大區從事投資,必須事前向投審會提出申請

  近幾年來,為了增加台籍員工向心力,不少台商都辦過「增資認股」,多數的情況是,企業辦理增資時,讓出一部分股權,開放員工入股。不論,員工入股是否自行買單,企業辦理「增資入股」時,都會先由台灣母公司辦理增資海外控股公司,再將計畫入股的員工載入控股公司名冊。   隨著台資企業開放員工入股漸成風潮,士林電機董事會日前通過,將以士電蘇州恆通增資為首例,讓台籍幹部入股百分之二十,未來海外子公司,都將循相同模式,這是首次有上市櫃台商清楚表明,增資用途是讓員工入股,引起外界關注。   經濟部投資審議委員指出,依「在大陸地區從事投資或技術合作許可辦法」第4條第1項第3款規定,台灣地區人民在大陸地區取得當地現有公司股權,視為「在大陸地區從事投資」,必須在行為發生前,依同法第7條第1 項備具申請書件向投審會申請許可,縱投資金額在公告限額以下,亦應填具申報書並檢附相關文件向投審會申報。   根據上開規定,台幹入股台資企業,視為「投資」行為,必須事前提出申請,否則恐將挨罰。另員工入股之後,按在大陸地區從事投資或技術合作審查原則第3點規定,也必須遵守台灣地區個人對大陸投資累計金額不得超過八千萬元的上限。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP