何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?

  中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年1月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。

  ZIM計畫中的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。在此基礎上,ZIM計畫中分為以下三種補助類型:
1.ZIM個人計畫(ZIM-Einzelproejkte):補助個別經營企業的研發計畫。
2.ZIM合作計畫(ZIM-Kooperationsprojekte):補助兩個或兩個以上的企業或研發機構之共同研發計畫。
3.ZIM網狀型合作計畫(ZIM-Kooperationsnetzwerke):補助在創新網狀架構下至少六個中小企業合作之全面性研發計畫。

本文為「經濟部產業技術司科技專案成果」

※ 何謂德國「中小企業創新核心計畫」(Zentrales Innovationsprogramm Mittelstand)?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7639&no=64&tp=1 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
以『江蘇科技改革30條』解析中國大陸科研經費改革制度

  中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。   此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。   中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。

歐盟知識產權報告顯示智慧財產權對於企業經濟績效具有正相關

  歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)與歐洲專利局(European Patent Office, EPO)於2021年2月所發布的研究報告「智慧財產權與企業績效」(Intellectual property rights and firm performance in the European Union)中,調查了歐盟成員國,總數超過12萬間公司,分析擁有智慧財產權(包含發明專利、設計專利與商標)跟未擁有智慧財產權的企業表現。   該研究報告分析結果顯示,擁有智慧財產權的企業經濟績效優於無智慧財產權的企業,平均來說擁有智慧財產權企業的員工工資比無智慧財產權企業的員工工資高19%,人均收入則平均高20%,這情況在中小企業更為明顯,擁有智慧財產權的中小企業比起無智慧財產權的中小企業,人均收入約高68%,再以擁有不同類型的智慧財產權進行區分,擁有發明專利的企業,其員工工資約高53%,收入約高36%,擁有設計專利的企業,其員工工資約高30%,收入約高32%,擁有商標的企業,其員工工資約高17%,收入約高21%。   該研究報告的內容尚無法找出智慧財產權有助於提升企業經濟績效的關鍵證據,但已呈現出智慧財產權與企業經濟績效之間具有正相關的趨勢,也凸顯出中小企業利用智慧財產權的巨大潛力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

預先擬定的事故應變計畫可降低資料外洩成本

  根據Ponemon Institute的調查,2011年至2012年中,英國企業資料侵害事故平均成本增加了15%。賽門鐵克指出,若企業備有正式的事故應變計畫,每件資料侵害事故的平均成本會降低至13英磅左右。除此之外,雇用外部顧問來協助應變,每件資料侵害事故的平均成本也會節省4英磅。   依據新的資料保護法律架構,歐盟委員會日前已開始擬訂新的資料侵害事故通知制度。同時,根據不同委員會的需求,未來將針對特定產業,制定新的網路與資訊安全管理規範。。   專家評估未來責任保險將成為確保資訊安全的新潮流。企業藉由事先擬定事故應變計劃來降低資料侵害的風險,同時也進行風險轉移的處置措施。各項事故應變計劃之中,保險制度是企業目前較感興趣的措施之一。保險制度除了可用於風險轉移之外,企業還可以從中取得資料侵害事故的專家網絡。這些專家包含事故鑑定專家、公共關係專家、風險管理專家,信用監測提供者或是資料侵害事故的事務處理公司,例如:協助發送事故通知的公司。保險業建置的專家網絡,未來將可以幫助要保人,以最快最省成本的方式處理相關事故。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP