美國總統選舉於11月8日舉行,數州針對大麻合法化與否一併進行公民投票,針對娛樂用大麻(Recreational Maijuana)議題舉辦公投共有五州,分別為加州、內華達州、亞里桑那州、緬因州以及麻州;而針對醫療用大麻(Medical Marijuana)議題舉行公投則有四州,係佛羅里達州、阿肯色州、北達科他州以及蒙大拿州,其中蒙大拿州原已開放醫療用大麻,本次公投案係放寬現行法規之限制。公投結果顯示,除亞里桑那州公投案未通過外,其餘各州公投案皆已通過。 民調公司蓋洛普(Gallup)於十月公布之民調顯示,美國民眾支持大麻合法化比例,已從1969年的12%爬升至目前的60%。本次各州公投案通過後,將對美國聯邦政府近80年的大麻禁令產生極大壓力。就經濟層面觀察,美國研究機構ArcView Market Research研究報告統計,全美目前合法管道銷售大麻金額從2014年的46億美元成長至54億美元,而作為全美最大經濟體的加州,依投資分析公司Cowen and Company分析,該州本次公投案通過將使全美大麻產業成長三倍,甚至於2026年市場規模將成長至500億美元。大麻合法化後,依「加州大麻業者協會」(California Cannabis Industry Association)估計,將為加州州稅增加十億美元的收入。根據統計,此一趨勢中,推動大麻合法化一方投入約兩千兩百萬美元支持加州公投案,而反對方則投入約兩百萬美元。
英國衛生部將建立之病歷資料庫挑動隱私保護議題之神經英國衛生部(Department of Health)於5月21日公布新的國家衛生政策,政策中指出,未來將建立資料庫,透過建設完善醫藥資訊之流通分享機制可改善對於病患之醫療服務以及促進學術研究之發展,當局承諾將採取適當之保護措施以妥善保護當事人之個人資料。然而,該政策同時亦承認對於病患資料匿名化之措施仍可能侵害當事人之隱私權。 當局指出,為了保護當事人之權益,將個人資料匿名化實屬必要,然而,對於醫療院所而言,縱使已經將個人資料匿名化,但透過其他相關資訊包含年齡、性別、血型、身高或者體重等,仍可能間接識別出當事人之個人資料。 衛生部重申建立資料庫分享當事人之個人醫療資料將可有效促進學術研究之發展,但將會透過當事人同意以及確實匿名化之機制保護當事人之個人資料。另外,衛生部於該政策中指出未來將要求英國之醫療機構必須於內部建立系統,使患者、當事人可有管道查詢其留存於資料庫之資料。 英國之隱私保護專員指出,由於此政策涉及敏感性個人資料之蒐集,所以其針對衛生部之政策規畫將持續關注,以確保當事人之隱私權。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。