美國食品及藥物管理局(Food and Drug Administration,FDA)於2008年9月8日針對現行優良藥品製造作業規範(Current Good Manufacturing Practice In Manufacturing, Processing, Packing or Holding of Drugs,藥品CGMP規範)中關於製劑的部分,公布了最新修正規則,並在同年的12月8日正式實施,希冀藉此能與其它FDA規範(例如:品質系統規範﹙the Quality System Regulation, 21 CFR part 820﹚)和國際性的CGMP標準(例如:歐盟CGMP規範﹙the CGMPs of the European Union﹚)相調和。 本次修正係採漸進式,而非一次性的方式為之,主要針對無菌處理(aseptic processing)、石棉過濾裝置(asbestos filters)之使用、以及第二者驗證(verification by a second individual)等做修正。 首先,針對無菌處理部分,要求設備及器具必須清潔、保養,且視藥品的本質不同,予以消毒和(或)殺菌,以避免故障或污染。對於可能遭微生物污染致影響其預定用途之原料、藥品容器或封蓋,要求應於使用前經過微生物檢驗。此外,尚新增生物負荷量測試(bioburden testing)於管制程序的列表中,以保障每批藥品之均一及完整性。 其次,關於石棉過濾裝置之使用方面,回應一直以來所存在著將使用於生產液態注射劑產品(liquid injectable products)之過濾裝置規範更現代化的需求,本次修正明訂,於今後禁止使用石棉過濾裝置,同時,亦將石棉過濾裝置於非纖維釋出性過濾裝置的定義之中刪除。 最後,有關第二者驗證部分,因應生產過程逐步自動化的潮流,本次修正於原有規範下增設規定指出,如以自動化設備執行秤重、測量、分裝、產量計算、設備清潔與使用記錄、生產與管控紀錄等之工作,且符合相關條文要求,並有一人檢查該設備是否如預設正常運作,則視為合乎原有規範下須有一人操作另一人檢查之規定。亦即修正後之執行,只需一人加以確認該自動化設備是否適當運作即為已足,毋須就過程中的每一步驟加以檢視,避免多餘人力之浪費。 總括來說,本次修正確保法規確實涵蓋現行業界的操作實務,同時並確立FDA將藥品CGMP規範與以現代化,並與國際標準調和之目標,為以漸進方式修訂藥品CGMP規範跨出重要的一步。
德國資料保護會議通過「哈姆巴爾宣言」,針對人工智慧之運用提出七大個資保護要求德國聯邦及各邦獨立資料保護監督機關(unabhängige Datenschutzaufsichtsbehörden)共同於2019年4月3日,召開第97屆資料保護會議通過哈姆巴爾宣言(Hambacher Erklärung,以下簡稱「Hambacher宣言」)。該宣言指出人工智慧雖然為人類帶來福祉,但同時對法律秩序內自由及民主體制造成巨大的威脅,特別是人工智慧系統可以透過自主學習不斷蒐集、處理與利用大量個人資料,並且透過自動化的演算系統,干預個人的權利與自由。 諸如人工智慧系統被運用於判讀應徵者履歷,其篩選結果給予女性較不利的評價時,則暴露出人工智慧處理大量資料時所產生的性別歧視,且該歧視結果無法藉由修正資料予以去除,否則將無法呈現原始資料之真實性。由於保護人民基本權利屬於國家之重要任務,國家有義務使人工智慧的發展與應用,符合民主法治國之制度框架。Hambacher宣言認為透過人工智慧系統運用個人資料時,應符合歐盟一般資料保護規則(The General Data Protection Regulation,以下簡稱GDPR)第5條個人資料蒐集、處理與利用之原則,並基於該原則針對人工智慧提出以下七點個資保護之要求: (1)人工智慧不應使個人成為客體:依據德國基本法第1條第1項人性尊嚴之保障,資料主體得不受自動化利用後所做成,具有法律效果或類似重大不利影響之決策拘束。 (2)人工智慧應符合目的限制原則:透過人工智慧系統蒐集、處理與利用個人資料時,即使後續擴張利用亦應與原始目的具有一致性。 (3)人工智慧運用處理須透明、易於理解及具有可解釋性:人工智慧在蒐集、處理與利用個人資料時,其過程應保持透明且決策結果易於理解及可解釋,以利於追溯及識別決策流程與結果。 (4)人工智慧應避免產生歧視結果:人工智慧應避免蒐集資料不足或錯誤資料等原因,而產生具有歧視性之決策結果,控管者或處理者使用人工智慧前,應評估對人的權利或自由之風險並控管之。 (5)應遵循資料最少蒐集原則:人工智慧系統通常會蒐集大量資料,蒐集或處理個人資料應於必要範圍內為之,且不得逾越特定目的之必要範圍,並應檢查個人資料是否完全匿名化。 (6)人工智慧須設置問責機關進行監督:依據GDPR第12條、第32條及第35條規定,人工智慧系統內的控管者或處理者應識別風險、溝通責任及採取必要防範措施,以確保蒐集、處理與利用個人資料之安全性。 (7)人工智慧應採取適當技術與組織上的措施管理之:為了符合GDPR第24條及第25條規定,聯邦資料保護監督機關應確認,控管者或處理者採用適當的現有技術及組織措施予以保障個人資料。 綜上所述,Hambacher宣言內容旨在要求,人工智慧在蒐集、處理及利用個人資料時,除遵守歐盟一般資料保護規則之規範外,亦應遵守上述提出之七點原則,以避免其運用結果干預資料主體之基本權利。
歐盟執委會發布第二份「數位十年狀況報告」,說明「2030年數位十年政策計畫」當前進展歐盟執委會(European Commission)於2024年7月2日發布第二份「數位十年狀況報告」(State of the Digital Decade Report)(下稱該報告),全面檢視「2030年數位十年政策計畫」(Digital Decade Policy Programme 2030, DDPP)之施行現況。特別的是,該報告今年首次新增歐盟成員國提出之「數位十年國家戰略路線圖」(National Digital Decade Strategic Roadmaps),說明預計投入數位轉型之措施、行動及資金。 為了呼籲歐盟成員國加強行動,進而促進經濟繁榮並提升社會凝聚力,歐盟執委會於該報告提出兩大面向之建議。首先,於數位基礎設施及企業之部分,該報告指出,目前高品質之5G網路覆蓋率僅有歐盟領土之50%。對此,各成員國與執委會應共同努力創建真正之數位單一市場(Digital Single Market)。此外,歐洲公司對於人工智慧、雲端、巨量資料之採用率遠低於DDPP欲達成之75%目標。若欲實踐商業部門數位化,應鼓勵中小企業採用創新之數位工具,且應積極投資具有高度發展可能性之新創企業。 其次,於數位技能與公共服務之層面,該報告提及,社會經濟相關之數位轉型過程中,以人為本係一貫之核心理念。然而,目前僅55.6%之歐盟人口具備基本數位技能,各成員國應採取多元方法於各級學校推動培養教育。又,為提升公共服務數位化,各成員國應致力於線上提供重要公共服務、電子健康紀錄,以利民間及企業方便運用。 最後,歐盟成員國須於2024年12月2日前審視、調整「數位十年國家戰略路線圖」,以符合DDPP闡述之目標。此外,歐盟執委會將監督、評估報告中建議之實施情形,並於2025年發布之「數位十年狀況報告」追蹤改善進度。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。