歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union, NIS 2 Directive)於2023年1月16日正式生效,其於《網路與資訊系統安全指令》(Directive on Security of Network and Information Systems, NIS Directive)之基礎上,對監管範圍、成員國協調合作,以及資安風險管理措施面向進行補充。 (1)監管範圍: NIS 2納入公共電子通訊網路或服務供應、特定關鍵產品(如藥品與醫療器材)製造、社交網路平台與資料中心相關數位服務、太空及公共行政等類型,並以企業規模進行區分,所有中大型企業皆須遵守NIS 2之規定,而個別具高度安全風險之小型企業是否需要遵守,則可由成員國自行規範。 (2)成員國協調合作: NIS 2簡化資安事件報告流程,對報告程序、內容與期程進行更精確的規定,以提升成員國間資訊共享的有效性;建立歐洲網路危機聯絡組織網路(European cyber crisis liaison organisation network, EU-CyCLONe),以支持對大規模資安事件與危機的協調管理;為弱點建立資料庫及揭露之基本框架;並引入更嚴格的監督措施與執法要求,以使成員國間之裁罰制度能具有一致性。 (3)資安風險管理措施: NIS 2具有更為詳盡且具體之資安風險管理措施,包含資安事件回報與危機管理、弱點處理與揭露、評估措施有效性的政策與程序、密碼的有效使用等,並要求各公司解決供應鏈中的資安風險。
美國紐約州長簽署電動車充電樁安裝法案,以實現零碳排放車輛之目標2022年11月22日紐約州長Kathy Hochul簽署一項新法案(S.8518A /A.6165A),旨在消除在私人財產上安裝電動車充電樁之障礙,以實現紐約州零碳排放車輛之目標。 該法案允許民眾在家中安裝充電站,並要求屋主協會(Homeowner Association,HOA,類似我國社區管理委員會)如欲拒絕屋主申請安裝電動車充電樁,須提出書面詳細說明理由,如於 60 天內未提出,除非是因為HOA合理要求其補正資料所致,否則屋主的申請即視為許可。紐約州欲透過該法案提升車主於住處安裝電動車充電樁數量,進而提高電動車使用率。 紐約州於2021年已立法(A.4302/S.2758)要求自2035年起販售新車皆需為零碳排放車輛,期許至2050年可達85萬輛零碳排放車輛。透過各項電動車相關政策之推動,2021年紐約州電動車銷售量大幅增長,截至2022年9月全州已超過11.4萬輛電動車上路,電動車充電站超過1萬座。 對此,我國立法院法制局於2022年6月發布「社區設置電動車充電設備問題之研析」報告指出,社區仍應以用電安全第一,不宜強制設置充電樁,現階段宜規定電動車廠商應設置充電設備或更換電池的設施,如要修正「公寓大廈管理條例」強制社區設置電動車的充電設備,建議優先修正「建築法」或「建築技術規則」加強設置該設備安全要求。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現