德國經濟暨能源部於2016年10月27日召開2016年「中小企業創新核心計畫」年度會議,約有200位專業經理人、企業與學者共同參與討論創新產品未來在市場的趨勢、創新生產流程與技術服務,專家在會中提供許多寶貴意見。聯邦政府中小企業處代表Gleick開幕致詞時表示,中小企業的創新力量決定我們在未來的經濟成就,所以政府需要持續投資在研究與創新以及適當的補助。
經濟暨能源部以「中小企業創新核心計畫」補助中小企業、研究機構共同開發以市場為導向的研究與創新技術,透過共同合作使參與的企業更具有產業競爭優勢,此計畫於2016年提供543百萬歐元補助,日前亦通過2017年548百萬歐元補助預算。
中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。ZIM計畫中補助的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年4月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。
本文為「經濟部產業技術司科技專案成果」
日本總務省及經濟產業省於2017年11月至2018年4月間召開6次「資料信託功能認定流程檢討會」(情報信託機能の認定スキームの在り方に関する検討会),檢討具備資料信託功能之「資料銀行」認定基準及模範條款等事項,於2018年6月公布「資料信託功能認定指引ver1.0」(情報信託機能の認定に係る指針ver1.0),以利實現個人資料流通並創造新服務型態。資料銀行係指基於與個人間資料利用契約,透過PDS(personal data store)等系統管理個人資料,根據個人指示或預先設定的條件,於判斷妥當性後向第三方提供資料之行業。目前指引內容包括︰(1)資料信託機能認定基準︰具體內容包括業者適格性、資訊安全原則、資訊安全具體基準、治理體制、業務內容等;(2)模範條款記載事項︰針對個人與資料銀行、資料銀行與資料提供者、資料銀行與接受資料提供者間關係,列出具體應記載事項;(3)資料信託機能認定流程。 作為日本總務省「資料信託功能運用推動計畫」(情報信託機能活用促進事業)一環,日立製作所、東京海上日動火災保險、日本郵局等於2018年9月10日發表將根據「資料信託功能認定指引ver1.0」,進行「資料銀行」個資管理、提供及運用等實驗,參與者分別扮演資料提供者、資料銀行和資料利用者三種角色,未來將會參考實驗結果,提出認定基準改善建議。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
日本 – 能否移除個人資料登載 各地法院見解有所不同為促進政府效能、提高服務品質、協助身份確認、減輕居民負擔,以期邁向先進資訊社會,日本政府近年致力推動「居民基本資料」(「住民基本台帳」;包括姓名、住址、性別、出生年月日及居民編號等)網路化,作為電子化政府基礎架構之一環。惟資料之蒐集範圍為何、傳輸網路安全與否、是否會遭政府濫用、有無可能遭相關人員洩漏於外移作他用等問題始終受到質疑,目前不僅計有福島?矢祭町、東京都杉並?、?立市三處地方政府暫緩推行,民間團體更分別在日本全國各地 13 個地方法院提起民事訴訟,主張「居民基本資料網路」(「住民基本台帳 ?????? 」;「住基 ??? 」)侵犯個人之隱私權及人格權,除請求移除已登錄之個人資料外,並要求中央政府、地方政府及掌理該網路的財團法人地方自治資訊中心(財?法人地方自治情報 ???? ; Local Authorities Systems Development Center, LASDEC )應負擔合計每人 22 萬日圓的損害賠償。 對此,金?地方法院首先作成判決( 2005 年 5 月 30 日),雖駁回原告方面的損害賠償請求,不過移除已登錄資料部分則判命原告勝訴。該院認為,「隱私」及「便利」之間究竟何者優先,應本諸居民個人意思自行決定,而非被告方面得以促進行政效率為由逕為取捨。然時隔一日( 2005 年 5 月 31 日),名古屋地方法院卻作出見解完全相反的判決,認為「居民基本資料網路」已採行必要之資料保護措施,個人隱私不至於輕易遭受侵害,原告方面的兩項請求均應予以駁回。 個人基本資料應予保護,當屬不爭之論,但究竟該如何保護、保護又該到何種程度,各方立場不同、偏重各異,看法常有差距;日本「居民基本資料網路」事件之原被告間、甚至不同地方法院間的見解差異,即為適例。目前正值我國研議修正個人資料保護法之際,前開事件今後如何發展,或有吾人持續觀察並深入思索之餘地。
美國白宮公布巨量資料追蹤報告與政策建議