日本經濟產業省公布自動駕駛後續之政策方針報告書

刊登期別
第28卷,第06期,2016年06月
 

※ 日本經濟產業省公布自動駕駛後續之政策方針報告書, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7664&no=55&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後

  歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。   根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。

英國上議院正逐條審議資料保護和數位資訊法案,期展現脫歐新格局

英國科學、創新和技術部(Department for Science, Innovation & Technology)提出之《資料保護和數位資訊法案》(The Data Protection and Digital Information Bill,以下稱DPDI法案)於2023年11月經下議院三讀後移交上議院,並於2024年3月20日起逐條審議。DPDI法案旨在調整由英國《一般資料保護規則》(UK General Data Protection Regulation, 下稱UK GDPR)、《資料保護法》(Data Protection Act, DPA 2018)與《隱私與電子通訊規則》(Privacy and Electronic Communications (EC Directive) Regulations 2003)建構之資料保護框架,形塑有別於歐盟典範的資料保護制度。 下議院三讀通過之DPDI法案包含:個人資料保護、數位核驗服務、消費者與商業等各類數據使用以及監管制度等,期能增加資料使用彈性、衡平保護與運用之衝突。該法案將釐清與重新定義資料保護之一般性通則,以下就部分變革與爭議簡要說明: 一、資料使用限制放寬:藉擴大正當利益(legitimate interest)意涵與科學研究範圍,擴大個人資料使用的正當性基礎,如國安、犯罪預防、公共衛生及商業與非商業性科學研究。 二、組織資料治理層級轉變:取消資料保護長設置,改為指派高階管理層之一人專任或多人兼任高階負責人。 三、監管機構變換:將現行資訊專員辦公室(Information Commissioner’s Office, ICO)獨立機構監管模式,轉換為政府任命之委員會。 四、資料傳輸規範可能不足:英國脫歐後,其與歐盟間的資料傳輸經認可而獲維繫。若DPDI法案通過並調整且簡化資料傳輸規範,英國可能需證明新程序及規範持續具有保護適足性。 就DPDI法案內容觀之,該法案主要建構於UK GDPR及相關規範之刪修,象徵英國政府對脫歐前資料保護制度之檢討,並期藉改革減輕企業合規成本。然,部分團體認為資料使用放寬與保護制度之變革,可能導致演算法歧視以及英國與歐盟間資料流動困難。雖DPDI法案尚在上議院委員會討論階段,可能因各方磋商而修改條文內容,但仍可見英國政府積極重新伸張國家主權之作為。

自日本產業競爭力強化法暨特區立法談監理沙盒立法之推動與課題

人工智慧即服務(AI as a Service, AIaaS)

  人工智慧即服務(AIaaS)之定義為由第三方提供人工智慧(AI)外包服務,其可使個人和公司基於各種目的進行AI相關實驗,同時毋須於初期即大規模投資或承受高度風險。著名之四大AIaaS供應商為Amazon AWS雲端運算服務、Microsoft Azure 雲端運算平台與服務、Google雲服務、以及IBM雲服務。   AIaaS之優點主要有:(1)降低成本:一般公司無須投資軟體、硬體、人員、維護成本以及不同任務之修改成本,AIaaS供應商可供應不同之硬體或機器學習供公司嘗試運用。(2)即用性:AIaaS供應商提供之AI服務為即用性,無須太多專家介入修改即可使用。(3)可擴展性:可由較小之項目開始試驗,逐步擴張調整服務,因此具有戰略靈活性。然而,AIaaS亦有以下潛在缺點:(1)降低安全性:公司必須交付大量資料給AIaaS供應商,因此資料之機密保護與預防竄改即為重要。(2)增加依賴度:若發生問題時,必須等待AIaaS供應商進行處理。(3)降低透明度:由於是即用性之AI服務,對於內部演算法之運作則屬於未知之黑盒子領域。(4)限制創新:因AIaaS供應商所供應之AI服務需一定程度之標準化,因此限制公司創新發展之可能。

TOP