印度民航局(Directorate General of Civil Aviation,以下簡稱DGCA)在禁止公眾使用無人機多年後,終於在2017年11月1日發布無人機使用規則(草案),並於網站上公開徵求意見。民航局部長P Ashok Gajapathi Raju表示,草案將於接下來的30日內,與所有利益相關者進行交流,一旦協商完成,將會確定無人機監管框架。預計今年12月底前完成訂定無人機使用管理規範,包含商業用途無人機。 根據規則草案,無人機依照最大起飛重量將其分為五類,分別為: 奈米(nano)無人機:重量小於250克; 微型(micro)無人機:重量在250克和2公斤之間; 迷你無人機(mini):重量介於2公斤至25公斤; 小型無人機:重量25公斤至150公斤; 大型無人機:重量150公斤以上。 除了飛行能力不超過50英尺高度的奈米無人機,所有無人機必須依照DGCA規定取得識別碼(Unique Identification Number)。針對2公斤以上的無人機需有無人機操作員許可證(Unmanned Aircraft Operator Permit),任何無人機的遙控飛行員必須年滿18歲,且需受過規定的培訓。 另,基於安全考量,草案規定禁止飛行無人機之區域,例如:機場範圍半徑5公里內、國際邊界50公里範圍內、戰略區域500公尺以內的國家重地、人口稠密地區、影響公共安全或正在進行緊急行動的地區、移動式平台(如:汽車、飛機或輪船)、及國家公園和野生動物保護區等生態敏感區域(eco-sensitive areas)等,違規者將依印度刑法之規定起訴。
歐盟行動電視管制架構及發展策略-以市場進入管制為中心 新國際協定針對未經請求之行銷電話或電子訊息展開聯合行動加拿大隱私專員於2016年6月14日表示,制定支持全球電信監管機構和消費者保護機構,針對垃圾郵件和行銷騷擾電話之跨境共同合作協議。 倫敦行動計畫(London Action Plan)備忘錄(MOU)之簽署國,現已可針對打擊跨國界或逾各個國家監管部門範圍之犯罪從事者的執法行動,相互分享資訊和情報,以獲取協助。 包括加拿大隱私專員辦公室(OPC)在內,目前既已簽署方分別為:澳大利亞通訊及傳媒管理局;加拿大廣播電視和電信委員會、韓國訊息安全局(KISA)、荷蘭消費者和市場監管局(ACM)、英國資訊委員辦公室及公民諮詢局、紐西蘭內政部、南非國家消費者委員會、美國聯邦貿易委員會和聯邦通訊傳播委員會。其他國家之政府當局亦表示願提交備忘錄,以及將來可能加入之意願。 對於加拿大隱私專員辦公室而言,這項協議將有助於達成加拿大反垃圾郵件法(CASL)關於電子郵件地址蒐集和間諜軟體之調查義務與責任,並與具有相同任務之夥伴機構間,進行偵查技巧及策略之分享。 加拿大隱私專員辦公室致力於和國內及國際夥伴合作,並已與國內之CASL執法合作夥伴及其他許多國家的隱私保護機構簽訂協議。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。