依2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014),美國國家製造創新網絡計畫於2016年2月公布年度報告(Annual Report)。國家製造創新網絡計畫的目標是處理發生於執行面的、介於初期基礎研究與技術布建之間的製造技術轉型(manufacturing related technology transition)挑戰。
國家製造創新網絡計畫的關鍵核心之一,是連結創新與製造,而「研發機構」(Institute)在這當中扮演最為關鍵的角色。此所稱之研發機構,係指2013年「國家製造創新網絡先期規劃」(NNMI-PD)以及2014年復甦美國製造與創新法(RAMI Act of 2014)第278s條(c)項所界定之「製造創新中心」(center for manufacturing innovation)——其採公私合營制(public-private partnership),其成員可包括各該業界之業者與學研機構,以及商務部長認屬適當之產業聯盟(industry-led consortia)、技職教育學校、聯邦政府所屬實驗室、以及非營利機構等。「研發機構」將以上之利害關係各方匯聚形成一個創新生態系(innovation ecosystem),以共同因應高風險之製造業挑戰並協助製造業者維持並提升產能與競爭力。
我國於民國105年7月由行政院核定通過之「智慧機械產業推動方案」,亦規劃透過「智機產業化」與「產業智機化」,建構智慧機械產業生態體系,整合產學研能量,並深化智慧機械自主技術中長期布局與產品創新。
本文為「經濟部產業技術司科技專案成果」
隨著科技及網際網路的普及,扮演著知識保存及傳遞角色的圖書館,在近幾年來因應讀者的需求,逐漸朝向數位化邁進。提供數位化服務對於圖書館的使用者來說,可降低資料蒐集的時間成本。然而,對於著作創作人而言,圖書館若提供數位化服務,可能會造成整個著作市場的失序,著作權人無法由著作市場取得著作權法所賦予的相當報酬,同時因應數位時代來臨所衍生的電子資料庫業者的生存空間亦大幅被壓縮。目前已有28個國家立法承認著作人的租借權,對於圖書館出借館藏造成著作權人的損失,採取補償制度,即賦予著作權人「公共出借權」(Public Lending Right;PLR),對於著作權人因為圖書館出借館藏所可能的損失,予以一定額度的補償,而歐盟亦正醞釀推行統一的出借權制度。依據法源的不同,PLR在實施上會有不同的做法。目前已實行PLR的28國,其立法基礎大致可分為三類:(1) 根據著作權法中租借權的授權,如德國、澳洲;(2) 根據著作權法外的補償權,如英國;(3) 或是透過地方文化機構的補助。 所謂「公共出借權」或稱「公共借閱權」乃指圖書或其他媒體資料,透過圖書館出借給讀者,而衍生政府以補償金或酬金支給作家的一種權利,是一種權利補償金制度。這個制度經濟上的假設是圖書館的出借行為會對於著作在市場上的銷售產生不利的影響,從而減損了著作權人的收入。但因為圖書館出借圖書乃是整個著作權法促進文化發展下所必須的一環,因此,對於著作權人的特別犧牲加以補償。從文化政策的角度來看,是屬於國家對文化創造者所實施的保護與獎勵措施。而基於圖書館對社會大眾提供免費服務的信念,實施公共出借權的國家,皆以政府經費或另設基金的方式來運作,並未直接向圖書館使用者要求收費,也並非以圖書館經費來支應給予作者的報酬。
中國大陸知識產權局知識發展研究中心於2014年發布2013年度中國大陸全國智慧財產權發展報告知識發展研究中心於今年2014年第二次發布整體中國大陸智慧財產權的發展指標數,該單位往後將持續觀察深入研究並提供報告指標,以反應中國大陸於專利、商標、著作權等智慧財產權的發展狀況,以利引導國家智慧財產權戰略實施,進一步強化推動國家於智慧財產權事業與科技創新研發發展。 報告顯示,中國大陸知識產權局綜合發展指數在2013年有增加趨勢,不論在創造、運用、保護或環境等四項發展指數上,皆有穩定成長趨勢。報告中除地區特徵顯示出智慧財產權的發展與完備外,穩定的數據更突顯整體智慧財產權環境的完善。從世界排名第一的受理發明專利申請82.5萬件、受理通過PCT提交國際專利申請案2.2924萬件、連續12年居世界第一受理商標註冊申請共188.15萬件,以及首度突破百件著作權登記案等,顯示出中國大陸在智慧財產權的整體保護與落實推動。 另外,中國大陸知識產權局不斷在擴大智慧財產權的保護,由2012年至2013年共提升了1.79,侵害假冒偽劣案件上,執法移送與審判起訴案件皆有所成長,顯示出中國大陸對智慧財產權的保護重視與落實。尤其,在整體智慧財產權環境提升與優化上,指標顯示出由2012年至2013年明顯上升5.97,主要是專責服務機構、人員購置的逐年增加與穩定成長之因,亦使智慧財產權整體環境營造有優化、加速與強化的提升。
美國國安局網站違法使用長期性“Cookies”雖然美國政府明文規定禁止聯邦政府機關使用長期性“Cookies”,但國家安全局(The National Security Agency, NSA)近日卻被發現將永久性“Cookies”放置於造訪該網站民眾之電腦之情形,且保存期限長達30年(直到2035年)。 所謂“Cookies”,指於使用者端紀錄該用戶造訪某一網站的過程與從事之活動,以使得下次進行相同網路瀏覽更為容易之工具。例如,透過Cookies紀錄的功能,使用者就可以將帳號與密碼記載於電腦中,再次造訪時即不用再次輸入帳號密碼以提供認證。 根據預算管理(Office of Management and Budget, OMB)於2000年公布之備忘錄Memorandum for the Heads of Executive Departments and Agencies(M-00-13)指出,聯邦政府機關除在於「必要需求」(Compelling need)下,不得使用長期性的“Cookies”。所有留在造訪民眾端的“Cookies”,必需隨著用戶關閉視窗而被消除。 NSA發言人Don Weber表示,NSA網站過去所使用的“Cookies”都是會隨者造訪者關閉網頁即刪除的暫時性“Cookies”,而這次之所以會產生長期性的“Cookies”留存在造訪者端,完全是因為NSA電腦系統更新不小心產生的,並非刻意用來作為監視使用者之工具。但民間團體則表示,這顯示了聯邦政府機關缺乏對於隱私權規範之認知,違反了國家最基本的隱私保護規範還不自知。 目前NSA已修正該程式,並清除了這些長期性的“Cookies”。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).