英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議:
(一)關於人工智慧及應用界定與發展
人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。
(二)未來對社會及政府利益及衝擊
人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。
目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。
在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。
(三)關於相關道德及法律風險管理課題
人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考:
(1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。
(2)調適由人工智慧作決策行為時的歸責概念和機制。
有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。
針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。
人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
本文為「經濟部產業技術司科技專案成果」
隨著網路蓬勃發展,個人資料之蒐集、處理及利用越來越普遍,同時也造成資料洩漏和濫用的問題日益嚴重,進而對隱私和個人資料構成侵害與威脅,為保障人民隱私和增強資料透明度,羅德島州州議會於2024年通過了一項具有里程碑意義的法律—《羅德島資料透明度與隱私保護法》(Rhode Island Data Transparency and Privacy Protection Act)。其核心內容包括以下幾個方面: 一、 適用對象:於羅德島州州內經營商業之營利組織(下簡稱企業),或主要生產製造商品、提供服務予該州居民之企業,且: 1. 在前一年度控制或處理超過三萬五千筆個人資料(personally identifiable information)者,但單純為完成付款交易之資料除外。 2. 控制或處理超過一萬筆個人資料,且總營收超過百分之二十係源自於銷售個人資料者。 二、 資料蒐集企業與資料當事人權利義務: 1. 選擇同意與退出權:前開適用對象應賦予資料當事人即消費者就其個人資料之蒐集、處理,行使選擇同意權(opt in)與退出權(opt out)。 2. 資料蒐集與利用透明度:要求企業蒐集個資前,須明確告知資料當事人蒐集目的、利用範圍以及可能的資料共享對象,並取得其同意。 3. 控制權:資料當事人有權向企業請求查詢、修改及刪除自己的資料,企業在接到請求後,必須即時處理該請求,並於45天之法定期限內准駁其請求;必要時得於通知當事人合理事由後,展延一次。 4. 安全維護措施:企業必須採取適當之安全維護措施來保護個人資料不受未經授權的近用、洩漏、竄改或毀損。前述措施,包括但不限於資料加密、權限管控等技術上管控措施。 5. 資料保護評估:企業須就「對消費者傷害風險較高」活動進行評估並保存文件化紀錄,包括: (1) 為精準行銷之目的(Targeted Advertising); (2) 銷售個人資料; (3) 為資料剖析之目的處理個人資料,且具合理可預見的風險將可能對消費者之財務、身體或名譽造成不公平或欺騙性的待遇,或非法的衝擊影響。 《羅德島資料透明度與隱私保護法》強化企業對資料隱私保護之責任,並督促其遵守法律要求。預計施行後將能加強對資料主體個人資料知情權、控制權、透明度及資料安全之保障。
日本印章制度與電子署名法修正日本國會於2021年2月9日正式提出「數位社會形成基本法草案」(デジタル社会形成基本法案),立法目的為提升國家競爭力、國民生活便利性,以建置一個「數位社會」,基本原則為降低數位落差,而降低數位落差之重要手段即包括日本印章制度之改革。 日本政府對印章制度之改革,可分為「取消蓋章制度」及「增加電子簽章使用率」二條路線。由於新冠疫情(COVID-19)影響全球工作型態,日本政府為推動電子化服務,考慮取消印章使用,因為其徒增商業活動成本,亦可能提升染疫風險。日本行政改革大臣河野太郎在2020年11月13日內閣會議後之記者會上即表示,約1萬5000種需要使用印章的行政服務中,絕大多數將取消蓋章制度。「數位社會形成基本法草案」亦預告將修改48部要求使用印章之法律,本草案及相關修法將於2021年9月正式通過施行。 電子簽章使用方面,日本在野黨聯盟於2020年6月提出「電子署名及認證業務法一部修正草案」(電子署名及び認証業務に関する法律の一部を改正する法律案)。依照現行規定,電子簽章須本人以一定方式簽署始可推定為真正,推定真正之條件過度嚴苛,便利性未優於實體蓋章,致使電子簽章使用普及度低落。本草案則降低推定門檻,僅須以特定電子方式簽署即有推定真正效力,使電子簽章簽署人身分驗證更為容易。目前法案仍在眾議院提案階段,尚未經國會表決通過,後續發展值得關注。
日本政府將於東京都及愛知縣成立「自駕車實證一站式中心」日本政府於2017年9月4日所召開之國家戰略特區區域會議(下稱戰略區域會議),決定由政府、東京都及愛知縣,共同成立「自駕車實證一站式中心」,協助企業及大學之自駕車相關實證研究。在自動駕駛實驗開始前,中心接受道路交通法等各程序相關諮詢,必要時可將相關程序以其他方式置換,將複數程序整合為一,推動相關實驗。 戰略區域會議並決定將窗口設置於東京都及愛知縣,欲進行實驗之企業可至前述窗口諮詢,東京都及愛知縣應與相關省廳及所管轄之警察、交通部門進行協調,並將所需之資訊彙整後回覆予企業,如此一來,企業可減輕實驗前繁瑣程序所帶來之負擔,進而降低啟動實驗之門檻。 東京都小池百合子知事於會後向記者們表示「自駕系統於汽車產業中,已是國家間之競爭」,且東京都將致力於「沙盒特區」體制之推動,於必要時可暫時停止相關現行法規之限制。愛知縣大村秀章知事則期待「透過實證實驗累積技術,促使愛知縣能維持引領世界汽車產業聚集地之地位」。 針對上述特區的設置,未來實際落實情況以及法規排除作法與範圍,值得我國持續投入關注。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。