英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議:

(一)關於人工智慧及應用界定與發展

  人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。

(二)未來對社會及政府利益及衝擊

  人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。

  目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。

  在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。

(三)關於相關道德及法律風險管理課題

  人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考:

(1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。

(2)調適由人工智慧作決策行為時的歸責概念和機制。

  有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。

  針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。

  人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7678&no=64&tp=1 (最後瀏覽日:2025/12/10)
引註此篇文章
你可能還會想看
歐盟將研修REACH有關規定 強制含有奈米物質產品之標示

  隨著奈米產品的日漸普及與多樣化,歐盟考慮近期法制化奈米產品的標示要求,未來將於歐盟「化學物質登記評估授權及限制規則」(Registration, Evaluation, Authorisation and Restriction of Chemicals,簡稱REACH)中有關化學物質登記事項強制要求奈米消費產品的標示,以確保奈米物質的可追溯性(traceability)。     歐盟會員國部長級會議—歐盟理事會(The Council of the European Union,亦以拉丁文簡稱Consilium)作為歐盟層級主要的決策機關,為了政策協調的一致性與長期穩定性自2007年起採三國為一組的方式輪值擔任主席國(trio presidencies),每一國負責六個月的期間,主席國扮演推動立法與政策決定的推手角色並負責歐盟會員國共識的達成,2010年7至12月由比利時擔任歐盟理事會的主席。有關奈米物質產品管理政策,可由日前比利時氣候與能源部長並負責消費者與環境保護的Paul Magnette公開表示的談話中窺見未來歐盟法規調整的大方向:「奈米物質逐漸普及於消費產品與各種日常用品,但是我們對奈米物質的了解卻很匱乏。雖然對於在歐盟日益增加的奈米物質使用無須過渡緊張,但是我們仍有義務在最小限度內做到應有的檢視以確保環境與健康安全。因此,目前缺乏事前警告與標示其成分及潛在毒性的奈米技術發展是無法令人接受的」。     奈米產品製造商宣稱目前尚無任何證據顯示奈米產品對人體有危害,因此,歐盟官方在採取強制標示相關規定以前如擬暫停奈米產品的生產亦可能遭遇極大阻力,然而Magnette同時表示,如對奈米產品採取「沒有(安全)證據就沒有市場(no data, no marke)」的政策也可能太過限制,但是目前對於奈米產品只是宣稱其優點的產業現況,確實太過扭曲消費者應被充分告知資訊的權利。他強調,如生產方不盡力將奈米產品的潛在風險降到最低,奈米產品可能如同基改作物(GMO)一樣被民眾摒棄於歐盟市場之外。     在2011年底以前歐盟執委會(The European Commission)將完成第二輪的歐盟法規檢視,執委會企業與工業委員會主管化學政策官員Maila Puolamaa表示,奈米物質的管理將會納入REACH有關法制中,這部分將會成為現階段法規檢視的重點之一。年產量一公噸以下的奈米物質登記將會簡化,奈米產品上市也應自動標示其成分。Magnette表示比利時推動REACH法規檢視會以幾個方向為重點:第一,要求奈米產品強制標示以使消費者了解其所購買產品含有奈米物質;第二,確保生產鏈的可追溯性以能追溯奈米物質的源頭;第三,確立歐盟的適當的風險管理與評估法規;第四,鼓勵各國儘速自行負責建立自己的評估、管理與資訊監控作法以因應此波奈米快速發展時期的變化;第五,奈米產品標示的項目法制化等。

美國聯邦最高法院認定多方複審程序並不違憲

  美國聯邦最高法院於2018年4月24日針對OIL STATES ENERGY SERVICES, LLC v. GREENE’S ENERGY GROUP, LLC, ET AL.ㄧ案作成判決。大法官以 7-2 投票表決通過,認定美國專利商標局(United States Patent and Trademark Office,USPTO)所屬專利審查暨上訴委員會(Patent Trial and Appeal Board,PTAB)進行內部專利審查「多方複審 (Inter Partes Review,IPR)」程序並未違憲。多方複審程序係國會在制度設計上針對專利獲證許可後,授權行政機關可經由實質利害關係人提出申請後,得有機會再次檢視其原先核發專利獲證許可的權限。因此被告經由行政機關專利審查獲得之權利,與被告在美國憲法下只能經由聯邦法院和陪審團裁決所保障權利不同。   本案自去年聯邦最高法院受理後,即成為美國發明法(Leahy-Smith America Invents Act)施行後備受矚目的重大案例之一。主要因為本案凸顯出各產業對多方複審程序實質影響的反應。若多方複審程序被判無效的話,將導致大部分專利紛爭從專利審查暨上訴委員會移回聯邦法院。導致美國發明法欲藉由行政審查改善並減輕司法體系負擔之目的難以達成,且導致專利訴訟更為耗時且昂貴,恐造成「非實施專利事業體」(Non-Practicing Entity, NPE)更加猖獗。因此,資通訊產業等普遍受到專利侵權訴訟困擾的企業大多贊同多方複審程序的合憲性。然而,大法官 John Roberts 和 Neil Gorsuch 對此一保守的決定表示異議,認為辛苦研發之專利僅因為第三人提起申請就受到行政機關撤銷,而非經由司法體系裁決仍有其疑義之處。仔細檢視多方複審程序的進行,似有違背於司法審查中要求獨立性的種種目的和精神。從歷史上來看,縱使行政機關具有核發專利獲證許可的權限,但不代表這可以導出行政機關就有撤銷專利的權限。因此,不同意見之大法官認為藉由行政機關的審議程序取代司法審查對專利可以做出撤銷的決定並不合憲。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形

  英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。   ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。   使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。   ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。

TOP