英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議:
(一)關於人工智慧及應用界定與發展
人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。
(二)未來對社會及政府利益及衝擊
人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。
目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。
在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。
(三)關於相關道德及法律風險管理課題
人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考:
(1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。
(2)調適由人工智慧作決策行為時的歸責概念和機制。
有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。
針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。
人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
本文為「經濟部產業技術司科技專案成果」
美國聯邦通訊委員會(Federal Communications Commission)於1998年要求有線電視業者將條件式接取(conditional access, CA)元件與機上盒的基本瀏覽設備分離;並於2003年採用CableCARD做為共通標準,希望藉由此「機卡分離」措施,達成有線電視服務層與設備層的結構分離,為設備層導入競爭與投資,以促進機上盒之功能創新與降低價格。 惟本措施2007年實施以來,因CableCARD安裝程序複雜、有線業者與機上盒製造商態度消極,致實行成效不彰。絕大多數的民眾仍未自購市售機上盒;且租用有線業者所提供機上盒者,大多未安裝CableCARD。 FCC故於2010年底發佈新命令,希望弭平有線訂戶租用與自購機上盒之落差;本命令於2011年8月生效,FCC表示將「嚴格執行」以下八項政策。有線業者應: (1)提供零售機上盒相容性之精確資訊; (2)提供非租用機上盒之訂戶同等的頻道套餐折扣; (3)無論租用或自購機上盒,CableCARD之價格必須一致,且明確揭露費用; (4)不得因租用或自購機上盒而行費率之差別待遇; (5)允許訂戶自行安裝CableCARD; (6)專業安裝人員必須到府完整安裝CableCARD; (7)提供具多重串流(multi-stream)效能之CableCARD; (8)確保得以收視所有的線性(linear)頻道。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。
知己知彼,兩岸研發經費比一比依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。 另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。 然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。
德國內閣公布「數位行政機關2020」 與「八大工業國(G8)開放資料宣言」行動計畫為執行「數位議程2014-2017」(行動領域3「創意政府」),德國內閣於9月17日分別公布出「數位行政機關 2020」與「八大工業國(G8)開放資料宣言」行動計畫。德國聯邦內政部部長de Maizère指出,此計畫的執行是為了讓公民享有行政機關更佳簡便、人性化、不受時間地點限制的服務,並且顧及到個人資安保障。 「數位行政機關 2020」旨於將德國數位政府(e-Government)法律在聯邦機關體制裏統一執行。在執行的做為中其中特別值得注意的是,以後聯邦形政體系使用的紙本檔案將全面轉換為數位版本。行政業務處理過程也將數位化、聯網化及電子化。此外、政府採購案流程也將數位化。這可幫助行政機關及企業節省行政資源。 為讓此計畫順利的執行,政府資料透明化的提升也變的格外重要。也因此,內政部長de Maizère公布針對「八大工業國(G8)簽署開放資料宣言」推出行動計畫。該計畫將政府機關的行政資料提供出來讓公民參考。依照該計畫,再明2015年4月底前,各聯邦政府機關將需提供兩個數據集(Datensatz),透過德國政府公開資料網路平台Govdata (https://govdata.de/) 公布出來。可公布出來之數據含括警察局統計之犯罪紀錄、政府建設合作案件、社會福利預算到德國國家數位圖書館資料及所有德國聯邦教育與研究部(Bundesministerium für Bildung und Forschung)的公開資料。