歐盟公布2016年歐洲創新計分板報告

  為確保各會員國能有效執行歐盟科研架構計畫(Horizon 2020),歐盟執委會每年針對各會員國整體創新能力及研發活動進行評估,據此研提創新競爭力排名,並定期公布歐盟創新計分板報告(European Innovation Scoreboard, EIS)。而觀諸最新公布2016歐盟創新計分板報告((European Innovation Scoreboard 2016),可歸納以下三項要點:

(一) 2016歐盟創新研發能力成長趨緩

  由於研發資金政策之限制以及英國脫歐影響下,相較於去年(2015)歐盟創新計分板報告(European Innovation Scoreboard 2015, EIS)之統計,今年度(2016)歐盟整體之創新研發能力成長趨緩。

(二) 2016創新研發先驅仍為瑞典,部分國家仍有大幅度之成長

  而今年之歐盟創新計分板報告在整體創新競爭力排名上,第一名仍為瑞典,其次則為丹麥,芬蘭,德國和荷蘭。而相較於去年之排名,拉脫維亞、馬爾他、立陶宛、荷蘭等國家則有顯著之成長。

(三) 在個別指標項目中,會員國創新表現亦有不同

  此外,獨立創新指標項目中,各會員國亦有不同之創新表現,例如:在「創新人力資源」及「學術研究項目」中,由瑞典榮獲最具競爭力之國家;而在「創新財政環境」項目中第一名為芬蘭;「創新私人投資」、「創新網絡」及「中小企業創新」等三大項目中,則分別由德國、比利時及愛爾蘭奪冠。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟公布2016年歐洲創新計分板報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7692&no=64&tp=1 (最後瀏覽日:2025/12/10)
引註此篇文章
你可能還會想看
何謂「大學技術經理人協會(AUTM)」?

  大學技術經理人協會( The Association of University Technology Managers, AUTM)是一個專門贊助並增進全球學術科技移轉的非營利組織,成立於1974年,其前身為大學專利管理協會(Society Of University Patents Administrators),至今已經擁有超過3000位來自超過300間大學技術轉移室的經理人成為會員,為美國產學合作的重要組織。   該協會運作之目的為充實成員對於技術轉移的知識、贊助技術轉移活動的進行、增進產業及學界的合作與交流,以及打造友善的跨國技轉環境。   該協會每年對美國及加拿大的大學、教學醫院,以及研究機構進行問卷調查,以了解各大學級研究機構的技術授權情形,並發布年度授權活動調查報告 (AUTM Licensing Activity Surveys)。其亦每年舉辦年會,提供來自全美各地的大學、研究機構、營利及非營利組織,以及全球對技術轉移議題有興趣的單位一個資訊交流的場合,會中除了舉辦針對技術轉移議題的研討會以外,並會提供相關企業或組織展示其技術移轉之服務及成果的機會,提供與會者認識技術移轉之世界趨勢的機會。

歐盟隱私工作小組支持擴大通知義務之業者範圍

  歐盟隱私權工作小組(working party)日前公布其對「隱私與電子通訊指令」(Directive on Privacy and Electronic Communications, 2002/58/EC)之修正意見,藉此重申支持個人資料外洩通知責任立法之立場,並建議擴大適用通知責任之業者範圍至涉及線上交易之電子商務之服務提供者。此項建議隨即遭到歐盟理事會及委員會之反對,認為通知責任應僅限於電信公司,而不應擴及其他電子商務服務提供者。   歐盟隱私權工作小組於2009年2月初提出的報告指出,個人資料外洩通知責任法制(Data Breach Notification Law)之建立對於資訊社會服務(Information Society Service)之發展是必要的,其有助於個人資料保護監督機構(Data Protection Authorities)執行其職務,以確認受規範之服務提供者是否採取適當的安全措施。再者,亦可間接提高民眾對於資訊社會相關服務使用之信心,保護其免於身份竊盜(identity theft)、經濟損失以及身心上之損害。   然而,歐盟理事會及歐洲議會則反對該項修正建議,其一方面認為不應擴張資料外洩通知責任制度適用之業者,另一方面則認為對於是否透過法制規範課予業者通知之義務,應由各國立法者決定是否立法,甚或由業者依資料外洩情形嚴重與否,來判斷是否通知其各國個人資料保護相關組織及客戶。此外,參考外國實施之成效,美國雖有多數州別採用資料外洩通知責任制度,但並非所有的隱私權團體皆肯認該項制度;英國資訊委員會對於該制度之成效則仍存質疑,因從過去為數眾多的個人資料外洩事件看來,其效果已逐漸無法彰顯。   雖然歐盟個人資料保護官(European Data Protection Supervisor)與歐盟隱私權工作小組之看法一致,但其與歐洲議會與歐盟理事會仍存有歧見,對於個人資料外洩通知責任制度之建立,似乎仍有待各方相互協商尋求共識,方能決定是否納入歐盟隱私及電子通訊指令之規範。

近來歐盟健康食品上市審查標準之實務觀察

  歐盟自2007年起開始實施「歐盟(EC)1924/2006號食品營養及健康訴求規則」(簡稱營養與健康訴求規則)以來,對於以營養與健康為訴求的產品,要求廠商上市販賣之產品,必須經過科學實證,產品標示必須簡易明瞭,強調科學實證必須證明食用該產品對人體有益,並證明食用產品與其功能效果間能建立因果關係,更強調文字敘述應貼近事實、清楚明瞭、確實可靠,避免使用模糊不清或造成不同解讀的文字,以便於消費者識別選購產品,滿足個人攝取這類食品的需求。   自規則實施以來,業者紛紛向歐盟食品安全管理局(European Food Safety Authority,簡稱EFSA)遞交申請案件,期待通過審查,獲准上市。然而,以營養與健康訴求規則中的第十四項減少疾病風險與促進兒童健康訴求,引起較多爭議。到2008年9月底,九件申請案當中已有八件遭到EFSA駁回,無不引起產業界的恐慌。僅Unilever(聯合利華公司,以下簡稱Unilever)的植物固醇產品(plant sterol)一案通過。反觀其餘個案,廠商遭EFSA駁回申請案的理由不一。例如,法國廠商Bio-Serae以仙人掌纖維衍生物申請具有降低血脂質的健康訴求,EFSA表示提交的證據資料不足以建立食用產品與效果功能間的因果關係。再者,另一件訴求ALA(α亞麻油酸)和LA(亞麻油酸)之攝取可以促進兒童生長的申請案中,EFSA接受廠商檢附的證據資料,但表示孩童經由正常飲食即可攝取足夠的ALA與LA,攝取量高於均衡飲食標準沒有益處。   雖然EFSA之意見不具有法律效力,且負面意見不表示否定產品之成分或功能,僅表示其依據資料不完整,不足以證明兩者具有因果關係,但卻具有相當之影響力。目前某些業者面對法令細節尚未明朗,同時負面意見多於正面意見的情形下,憂心負面意見恐將影響公司與產品形象,先行退出審查過程並暫緩產品上市。到2008年底,EFSA又駁回五件關於益生菌(probiotics)增進兒童健康的申請案,表示提供的證據資料不足以證明其功能為由。累計至去年底二十七申請案中(含上述五件益生菌申請案),僅有五件申請案獲得EFSA之正面意見,負面意見依舊多於正面意見。   然而在2009年1月,EFSA核准西班牙廠商Danone促進兒童骨骼生長的健康訴求,表示證據資料足以建立因果關係,證明維他命D有助於鈣質攝取。顯示出業者提供充足科學證據資料與完整的產品說明,以證明其食用產品與功能效果間的因果關係,將利於審查作業進行,也將助於獲得EFSA之核准上市。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

TOP