歐盟公布2016年歐洲創新計分板報告

  為確保各會員國能有效執行歐盟科研架構計畫(Horizon 2020),歐盟執委會每年針對各會員國整體創新能力及研發活動進行評估,據此研提創新競爭力排名,並定期公布歐盟創新計分板報告(European Innovation Scoreboard, EIS)。而觀諸最新公布2016歐盟創新計分板報告((European Innovation Scoreboard 2016),可歸納以下三項要點:

(一) 2016歐盟創新研發能力成長趨緩

  由於研發資金政策之限制以及英國脫歐影響下,相較於去年(2015)歐盟創新計分板報告(European Innovation Scoreboard 2015, EIS)之統計,今年度(2016)歐盟整體之創新研發能力成長趨緩。

(二) 2016創新研發先驅仍為瑞典,部分國家仍有大幅度之成長

  而今年之歐盟創新計分板報告在整體創新競爭力排名上,第一名仍為瑞典,其次則為丹麥,芬蘭,德國和荷蘭。而相較於去年之排名,拉脫維亞、馬爾他、立陶宛、荷蘭等國家則有顯著之成長。

(三) 在個別指標項目中,會員國創新表現亦有不同

  此外,獨立創新指標項目中,各會員國亦有不同之創新表現,例如:在「創新人力資源」及「學術研究項目」中,由瑞典榮獲最具競爭力之國家;而在「創新財政環境」項目中第一名為芬蘭;「創新私人投資」、「創新網絡」及「中小企業創新」等三大項目中,則分別由德國、比利時及愛爾蘭奪冠。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟公布2016年歐洲創新計分板報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7692&no=64&tp=1 (最後瀏覽日:2026/02/23)
引註此篇文章
你可能還會想看
從Google提起的「FITBEING」商標異議案談JPO對於近似與著名商標的判斷

日本特許廳(Japan Patent Office,後稱JPO)於2024年6月駁回Google公司對來自中國大陸的深▲せん▼小▲ちぇ▼科技有限公司(後稱中國大陸公司)有關「FITBEING」文字商標的註冊異議,認為中國大陸公司的「FITBEING」商標與Google公司的「FITBIT」商標在外觀、發音等方面存在顯著差異,因此不會對消費者造成混淆。 中國大陸公司於2023年1月在日本申請註冊「FITBEING」文字商標,指定於第14類的「鐘錶和計時儀器」等商品。Google公司於同年8月對該商標提出異議,主張「FITBEING」商標與其於2018年註冊的「FITBIT」文字商標,在拼寫及發音上相似,並有致相關消費者混淆誤認之可能,違反日本商標法第4條第1項第11款、第15款。此外,Google公司亦表示其「FITBIT」文字商標已為Google穿戴設備的「周知」標識,應具有排他性。 JPO指出,儘管「FITBEING」和「FITBIT」在拼寫上皆以「FITB」開頭,惟二者字尾的「ING」和「IT」無論在文字外觀、字母數量還是音節數量上的差異皆具顯著差異。此外,JPO亦評估「FITBIT」商標是否為「周知」商標。依日本商標法第4條第1項第10款規定,與消費者廣泛認識其為表示他人營業商品或服務之商標相同或近似,使用於同一或類似之商品或服務者,不得註冊商標。本案中,JPO指出Google公司所提供的證據,包括各國市場調查報告和廣告宣傳資料,卻未能提交足夠的日本市場調查資料,以證明「FITBIT」在日本已被相關消費者廣泛認識為Google穿戴式設備的「周知」標識。因此,基於雙方商標近似及周知程度,JPO駁回了Google公司的異議,認定兩商標無導致消費者混淆誤認之虞。 由本案可知,日本JPO對商標近似性的判斷標準與我國大致相同,均會考量商標的外觀、發音及涵義的差異。企業在設計創作商標時,應檢視商標的外觀、讀音以及涵義,避免欲註冊商標與現有商標近似,以避免無法取得註冊商標。此外,若欲主張「周知商標」,企業應確保提交充分的當地市場調查資料證明商標的知名程度,包括當地市場的消費者調查結果及銷售資料等,當面臨爭議時,用以主張商標的著名程度。 本案目前經JPO駁回Google公司的異議後,尚無進一步的訴願或訴訟公開資訊。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)

美國國會議員提出「網路盾」草案

  美國民主黨議員Ed Markey於2019年10月22日提出2019年「網路盾」草案(Cyber Shield Act of 2019),將設立委員會以建立美國物聯網網路安全標準。   雖由參議員MarkWarner所提出之2019年物聯網網路安全促進法(Internet of Things Cybersecurity Improvement Act of 2019)已通過並施行,惟該法僅適用於聯邦政府機構之設備採購。而「網路盾」草案之目的則係設立委員會並建立美國物聯網設備認證標章。依據該草案第3條,於該法通過並經總統簽署後90天內,美國國務卿必須建立網路盾諮詢委員會,該委員會之任務為擬定並建立美國網路盾標章。   另依據該草案第4條,物聯網產品之自願性認證程序與認證標章,內容必須符合特定產業之網路安全與資料保護標準。該標章應為數位標章,並標示於產品之上,且可劃分數個等級,以表彰其符合產業所需求之網路安全與資料安全等級。而針對標章之內容,該法要求美國國務卿於法律通過90天內應建立諮詢相關利益團體之程序,以確保其充分符合產業需求與利益。美國國務卿與各聯邦主管機關亦須合作以持續維護網路安全與資料安全標章之運作,且確保獲得該標章之產品,其資安與資料保護品質均優於未受認證之產品。

英國通過《資料(使用與存取)法》,提升資料使用的便利性

2025年6月19日,英國《2025年資料(使用與存取)法》(Data(Use and Access)Act 2025,下簡稱DUA法)正式生效。DUA法的宗旨是在《英國一般資料保護規則》(United Kingdom General Data Protection Regulation, UK GDPR)的基礎上,放寬在特定情形下執法機關、企業與個人使用資料的限制,以提升資料管理及使用的便利性。 DUA法預計將於2025年8月開始分階段實施,重點如下: (1) 放寬自動化決策(Automated Decision-Making, ADM)條件:依據UK GDPR規定,個人有不受純粹基於自動化處理且產生法律效果或類似重大影響之決策所拘束之權利。此項規範確立自動化決策之原則性禁止,僅於符合特定例外事由時始得為之。DUA法則放寬此一限制,未來企業只要確保有向當事人提供自動化決策的資訊、決策結果申訴的管道,以及得人為干預設計之保障措施以後,即可做出對個人有重大影響的自動化決策。 (2) 資料主體存取請求權(Subject Access Request, SAR)規範明確化:當事人有權向持有自身個資的單位請求查閱,DUA法明訂組織在收到請求後應回應的時間,而當事人請求的範圍也應合理且合於比例,避免組織浪費人力搜索不重要的資訊。 (3) 建立有效申訴管道:規定任何使用個人資料的組織都必須設立有效的申訴機制、提供電子化申訴管道、並回報處理結果,若訴求未獲得解決,當事人即可向英國資訊專員辦公室(Information Commissioner’s Office, ICO)提出申訴。 (4) 科學研究得採概括同意機制,商業研究亦屬適用範疇:DUA法明確指出,基於科學研究目的,研究人員於確保適當個人資料保護措施之前提下,得以概括同意(broad consent)方式取得當事人之同意,以利進行科學研究活動。DUA法並明確界定科學研究之範疇可涵蓋商業研究(commercial research),擴大其適用領域。 (5) 允許網站直接使用Cookie:網站與應用程式的儲存與存取技術(Storage and Access Technologies)在低風險情況下,可不取得使用者事前同意,即紀錄使用者瀏覽紀錄。 DUA法將於2025年8月開始分階段實施。如何在科技發展的便利性與個人資料的安全性間取得平衡,是當代社會不容忽視的議題,可持續觀察追蹤英國施行DUA法的成效供我國參考。

新加坡科技與研究局針對未來工廠提出研究規劃及方向

  新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。   為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。

TOP