2016年11月30日,歐盟執委會正式推出了清潔能源轉型(Clean Energy Transition)包裹立法提案。這項又名為「全歐洲人的清潔能源」(Clean Energy for All Europeans)包裹立法提案有三個主要目標,分別為「能源效率優先」(putting energy efficiency first)、「讓歐盟於再生能源取得全球領導地位」,以及「提供消費者公平合理的方案」(providing a fair deal for consumers)。而整個包裹措施的內容,除了再生能源指令(2009/28/EC)的修正案的提出外,並包含能源效率指令(2012/27/EU)以及建築物能源績效指令(2010/31/EU)的修正規劃。
在再生能源指令的修正草案方面,根據執委會的說明文件 ,此次的修正大致延續2015年所提出公眾諮詢的架構,分為六個面向,分別為:(1)於電力部門創造可以促成再生能源進一步佈署之架構(2)供冷供熱部門再生能源的主流化(3)運輸部門的減碳與多元化(4)對於消費者之賦權與資訊之提供(5)強化歐盟對於生質能源的永續性門檻(6)確保歐盟層級的具拘束力目標(binding target)能及時並以符合成本效率之方式達成。
在「於電力部門創造可以促成再生能源進一步佈署之架構」方面,執委會指出,依照目前規劃,2030年時歐洲將有一半的電力來自再生能源。而因應上述規劃願景,此次的修正草案融入會員國在設計支持再生能源機制時所應遵循的一般原則,亦即除了確保相關支持機制對於投資人具透明性與安定性,系爭機制亦須符合成本效益且為市場導向。
在「供冷供熱部門再生能源的主流化」部分,執委會首先說明,供冷供熱佔歐洲能源需求的50%,但此部分再生能源的使用仍然發展遲緩。此次修正規劃的主要重點則首先在於讓會員國有機會以供冷供熱部門為選項來增加其再生能源佔比,以2030年為目標,預計每年增加1%。並在特定條件下,開放再生能源發電業者對於區域型供冷供熱系統的近用權利。
我國政府近來為推動能源轉型政策,亦致力提高再生能源配比,並由行政院核定諸如「太陽光電2年推動計畫」等配套方案,近來並將修正再生能源發展條例;歐盟所提出相關規劃內容,或亦有值得我國參酌之處。
美國政府在2015年9月14日發布,將投入超過1.6億美元(約台幣50億元)於新的「智慧城市計畫」(Smart Cities Initiative)。透過中央政府的研究,以及全美國超過二十個城市的合作,來共同著手城市主要面臨的問題,包含:減緩交通阻塞、對抗犯罪問題、促進經濟成長、對於氣候變遷影響的管理、改善城市服務的遞送問題等。此戰略主要有四個策略方案:(一)創造「智慧聯網」應用的試驗平台,並發展新的多部門合作模式;(二)致力於城市科技相關的活動,並打造城市之間的合作;(三)善用現有的中央政府資源;(四)追求國際間合作。 而在十月份,美國白宮公佈由國家經濟委員會(National Economic Council)與國家科學與技術政策辦公室(Office of Science and Technology Policy)共同完成的「美國創新戰略」(A Strategy for American Innovation)中,明確地指出美國國家的突破重點領域為:解決國家及全球性的挑戰(Tackling Grand Challenges)、精密醫療、健康照護、先進的運輸工具、智慧城市、乾淨能源與能源效率、教育科技等面向。此戰略報告係延續美國白宮於2011年,由相同組織單位所完成的「美國創新戰略-確保經濟發展與繁榮」(A Strategy for American Innovation – Securing Our Economic Growth and Prosperity),其中列舉出國家的目標政策為:能源改革、生物科技、太空探索、醫療健康與教育科技。相較下,十月份甫公佈的美國「創新戰略」則更明確的將「智慧城市」之發展設為重點政策。 美國政府將投入協助芝加哥(Chicago)「科技計畫」(Tech Plan)中的子計畫-「城市感測器專案」(Array of Things, AoT),發展當地下一代智慧聯網的基礎設施,包括運用內建Wi-Fi的感測器裝置路燈,使其能夠有照明的基本功能外,還能蒐集諸如人潮流量、天氣、濕度、空氣品質、亮度、聲音大小等數據。 在此戰略推動之下,美國主要之智慧城市發展的實例,如匹茲堡(Pittsburgh)的前導計畫(pilot project),係藉由交通網絡之間的交通號誌整合,得以優化地區性的交通吞吐量,讓平均降低將近百分之二十五的交通時間。另外,在肯塔基州(Kentucky)的最大城市-路易斯維爾(Louisville),利用具有感測功能之哮喘吸入器所蒐集的資料,統整出哮喘發生的「熱點」,以及空氣品質等級等其他環境因素,作為該州政府政策制定參考依據。
何謂芬蘭科學院(AOF)?芬蘭科學院(Academy of Finland, AOF)是隸屬於芬蘭教育、科學及文化部的專業研究資助機構,旨在促進芬蘭科學研究的多樣化及國際化,資助前端突破性科學研究,提供科學技術及科學政策的專業知識,並加強科學研究的地位。芬蘭科學院最高決策單位為七人委員會,委員會主席由科學院院長出任。 底下設有:文化與社會、自然科學與工程、健康醫學以及環境與自然資源四個研究委員會。每一委員會設主席一人委員十人,任期三年。行政單位由大約一百位專家組成,主要工作為準備及執行七人委員會及各研究委員會的各項工作與決策,並撰寫科學報告和研究計畫。 其任務包括獎助大學與研究機構內的科學研究工作與團隊、參與多邊研究計畫的規劃與獎助、資助芬蘭研究人員參與國際研究計畫、評估科研計畫的品質及水準,以及科技政策專業諮詢等。研究範圍涵蓋建築、太空研究、細胞生物和心理學到電子和環境科學研究。
歐盟EDPB認為防範Cookie疲勞應確保資訊透明及簡化歐盟資料保護委員會(European Data Protection Board, EDPB)於2023年12月13日回覆歐盟執行委員會(European Commission, EC)有關Cookie協議原則草案(Cookie Draft Pledge Principles)之諮詢。該草案旨在處理「Cookie疲勞」(Cookie fatigue)所造成的隱私權保護不周全之處。 在電子通訊隱私指令(ePrivacy Directive)以及GDPR規範下,由於現行同意機制複雜,造成用戶對Cookie感到疲勞,進而放棄主張隱私偏好。 為了避免「Cookie疲勞」,EDPB提出以下原則和建議,大致可以分為三點: 一、簡化Cookie不必要的資訊 1.基本運作所需之Cookie(essential cookies)無需用戶同意,故不必呈現於同意選項,以減少用戶需閱讀和理解的資訊。 2.關於接受或拒絕Cookie追蹤的後果,應以簡潔、清楚、易於選擇的方式呈現。 3.一旦用戶拒絕Cookie追蹤,一年內不得再次要求同意。 二、確保資訊透明 1.若網站或應用程式的內容涉及廣告時,應在用戶首次訪問時進行說明。 2.不僅是同意追蹤的Cookie,用於選擇廣告模式的Cookie,仍需單獨同意。 三、維持有效同意 1.應同時顯示「接受」和「拒絕」按鈕,提供用戶拒絕Cookie追蹤的選項。 2.在提供Cookie追蹤選項時,除了接受全部的廣告追蹤或付費服務外,應提供用戶另一種較不侵犯隱私的廣告形式。 3.鼓勵應用程式提前記錄用戶的Cookie偏好,但強調在用戶表達同意時必須謹慎處理,預先勾選的「同意」不構成有效同意。 EC表示,該草案目的在於簡化用戶對Cookie和個人化廣告選擇的管理,雖然為了避免Cookie疲勞而簡化資訊,仍應確保用戶對於同意Cookie追蹤,是自願、具體、知情且明確的同意。將於後續參考EDPB之建議,並與利害關係人進行討論後,制定相關法規。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。