2016年11月8日印度新德里(New Delhi),在英國首相德蕾莎‧梅伊(Theresa May)及印度總理納倫德拉‧莫迪(Narendra Modi))見證下,由英國智慧財產局(UK Intellectual Property Office;簡稱UK IPO)及產業政策與推廣部(Department of Industrial Policy and Promotion)共同簽署智慧財產權備忘錄。
雖然學術上就智慧財產權之保障強度,對於促進創新領域是否具有正面效益,似乎仍然是意見分歧,反思者主要論點在於模仿或抄襲對於某些產業發展,如:時尚設計、金融產品或程式開發等,反而有益於保持源源不絕之創造力,甚且適度開放更有促進市場競爭與減少社會成本,如:避免專利蟑螂崛起或企業壟斷,其中著名案例就是Linux;然而,雖有前述反思浪潮,但目前國際間仍是普遍相信藉由協議或備忘錄形式,試圖架構完善且強健之智慧財產權保護體系,維護權利人之權益,將有助於提升企業或一般民眾投入創新領域之意願。此番論點可見諸於英國所指派至印度擔任高級專員之多米尼克‧阿斯奎斯(Dominic Asquith),即是認為英國與印度簽署智慧財產權備忘錄,對於兩國創新及創意領域之發展,具有高度重要性。
針對該備忘錄之重點,內容摘錄如下:
1、相互交流智慧財權領域管理優化方式,如:簡化專利、商標、工業設計之註冊處理流程。
2、技術交流,此包括主管機關支援及智慧財產權紛爭之司法替代方案。
3、宣傳活動,此含有智慧財產權評價與維護之業務諮詢。
4、針對公眾舉行教育活動,以提高其對智慧財產權之認識與尊重。
歐洲執委會(European Commission)根據2022年6月23日生效的資料治理法(Data Governance Act, DGA)第11條及第17條,於2023年8月9日公布資料治理法及實施規則(Commission Implementing Regulation (EU) 2023/1622 of 9 August 2023),該規則明定可用於識別「受認證的歐盟資料中介服務提供者(data intermediation services providers)及資料利他主義組織(data altruism organisations)」的通用標章(Common logos)之細節,且該通用標章已申請商標註冊,以保護其免於遭受不當利用。 經歐盟認證的「資料中介服務提供者」向服務利用者提供服務時,應確保服務利用者(個人及公司)可以有效的控制自己的資料,包含共享資料的對象及時間、可在不同裝置間共享資料等。經歐盟認證的「資料利他主義組織」則應以全歐盟通用之統一格式的歐洲利他主義同意書(data altruism consent form)在各成員國之間蒐集資料,並應確保資料主體(data subject)可以隨時撤回其同意。 識別受認證的「資料中介服務提供者」及「資料利他主義組織」是實施資料治理法的一環。受認證的「資料中介服務提供者」及「資料利他主義組織」選擇使用通用標章時,不僅須將通用標章清楚標示在所有線上的出版品上,亦須將通用標章清楚標示在所有線下的出版品。經歐盟認證的「資料利他主義組織」在標示通用標章時須附上可連結到「歐盟認證的『資料利他主義組織』之公開登記資料庫(public register of data-altruism organisations)」的QR code,歐盟將於2023年9月24日開始提供該公開登記資料庫。在歐盟層面,這些通用標章的利用可以易於識別被認證的「資料中介服務提供者」及「資料利他主義組織」與其他未經認證的服務提供者,有助於提高整體資料市場的透明度。 由於數位資料具有易於竄改、複製等特性,因此需要透過「可信任工具」來證明其來源正確、內容真實等,歐盟即以「通用標章」來識別「資料中介服務提供者」及「資料利他主義組織」。我國法務部、司法院、高等檢察署、法務部調查局和內政部警政署等機關共同推動司法聯盟鏈,並於2022年推出「b-JADE證明標章」,透過認證機制確保鏈下之數位資料於上鏈前具有可信任性。通過驗證並取得「b-JADE證明標章」的機關、機構或團體等組織,對外可證明其具備資料治理暨管理能力及保護數位資料之能力,且可取得申請加入「司法聯盟鏈」之機會。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國參議院提出「2019年物聯網網路安全促進法」草案自2016年Mirai殭屍網路攻擊事件後,物聯網設備安全成為美國國會主要關注對象之一,參議院於2017年曾提出「2017年物聯網網路安全促進法」(Internet of Things Cybersecurity Improvement Act of 2017)草案,防止美國政府部門購買有明顯網路安全性漏洞之聯網設備,並制定具體規範以保護聯網設施之網路安全,然而該法案最終並未交付委員會審議。 2019年4月,美國參議員Mark Warner提出「2019年物聯網網路安全促進法」草案(Internet of Things Cybersecurity Improvement Act of 2019),再度嘗試建立物聯網網路安全監管框架。本法將授權主管機關建立物聯網設備所應具備之安全性條件清單,而該清單將由美國國家標準與技術研究院(National Institute of Standards and Technology)擬定,並由管理與預算局(Office of Management and Budget, OMB)負責督導後續各聯邦機關導入由美國國家標準與技術研究院所制定之網路安全指引。本法草案相較於2017年的版本而言雖較具彈性,惟網路安全專家指出,清單之擬定與執行管理分別交由不同單位主責,未來可能導致規範無法被有效執行,且聯邦各層級單位所需具備之資安防護等級不盡相同,如何制宜亦係未來焦點。
美國商務部國家技術與標準局公布技術創新計畫(TIP)之執行規則草案,徵求外界意見過去十餘年來,美國商務部國家技術與標準局(The Commerce Department’s National Institute of Standards and Technology, NIST)推動的「先進技術計畫」(Advanced Technology Program, ATP),成功帶領美國中小企業透過技術的研發投入,創造美國經濟榮景。近年來面對變動劇烈的國際環境,為提升美國競爭力,美國總統於2007年8月9日簽署通過「意涵深遠地促進傑出技術、教育與科學之美國機會創造法」(The America Creating Opportunities To Meaningfully Promote Excellence In Technology, Education, And Science Act, 簡稱The America COMPETES Act)。 The America COMPETES Act特別授權NIST負責推動並執行一項新的研究補助計畫-技術創新計畫(Technology Innovation Program, TIP),企圖藉由在國家重點需求領域(critical national need areas),補助具有高風險性及高報酬的技術研究(high-risk, high-reward research),支持、促進並加速美國的創新。所謂「高風險、高報酬」之技術研究,指具有以下三項特質的技術研究:(1)研究可轉化成具體實益的潛在可行性,其成果將產生深遠及廣泛的影響;(2)研究計畫的進行係為了回應屬NIST技術職掌範圍內的重大國家需求;(3)研究的技術議題過於創新(too novel)或跨越甚多學科(spans too diverse a range of disciplines),以致傳統的專家審查程序無法適當地用來篩選此類計畫。至於「國家重點需求領域」,指問題觸及的面向極大,然須要被克服的社會挑戰(societal challenge)尚無因應之道而有賴國家予以關注,此等問題與社會挑戰可能可以透過高風險、高報酬研究之進行而予以解決者。 根據The America COMPETES Act,TIP將依研究實力競爭(on the basis of merit competitions)的原則,透過分攤成本的研究補助(cost-shared research grants)、合作協議(cooperative agreements)或契約(contracts)等方式,鼓勵業界單獨或共同(透過合資方式)提出技術創新的研究計畫申請以合資方式提出者,其主導者(lead entity)可為中小型企業或高等教育機構。TIP的補助對象限於設立於美國並在美國境內經營其主事務的中小型企業,外國企業參與TIP若符合美國經濟利益者,亦得獲得補助。TIP的補助金額不超過個別研究計畫總成本的半數,且只能用於補助直接成本,間接成本、收益或管理費則不在補助之列。總計對單一單位的補助以最長三年且不超過三百萬美元為限;對於合作研究則以最長五年且不過過九百萬美元為限。由於The America COMPETES Act僅就TIP的補助目的、補助對象、補助條件等作原則性規定,其運作細節仍有待NIST進一步設計,日前NIS已於2008年3月7日對外公布TIP執行規則草案,徵求各界意見。 隨著TIP的規劃與實際運作,過去由NIST所執行的ATP也將完成其歷史性任務,由TIP取代並宣告美國政府支持產業技術研發的新理念-亦即透過支持高風險、高報酬之技術研究,以回應美國的國家重點需求領域。 身為全球創新的龍頭,美國所提出的科技研發創新政策向為各國學習與參考借鏡的標竿,隨著The America COMPETES Act的通過,新法中關於美國產業創新的新機制規劃,已引起其他國家高度關注。印度科技與地球科學(Science & Technology and Earth Sciences)部長在The America COMPETES Act通過的一個月後即宣佈,印度政府將於短期內提出全面性的印度創新法案(Indian Innovation Act),藉以激勵印度的創新,而此項創新法案將會以美國的America COMPETES Act為參考模型。